-
Notifications
You must be signed in to change notification settings - Fork 35
/
train_affectnet.py
199 lines (167 loc) · 6.89 KB
/
train_affectnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
'''Train CK+ with PyTorch.'''
# 10 crop for data enhancement
from __future__ import print_function
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
from torchvision import transforms,utils
from torch.utils.data import DataLoader
import transforms as transforms
import numpy as np
import os
import argparse
import utils
from CK import CK
from torch.autograd import Variable
from models import *
from ShuffleNetV2 import ShuffleNetV2
from flops_counter_pytorch.ptflops import get_model_complexity_info
from summary import model_summary
from datagen import ListDataset
train_data = '../train_val_imgs/Manually/Manually_train_croped'
test_data = '../train_val_imgs/Manually/Manually_validation_croped'
parser = argparse.ArgumentParser(description='PyTorch CK+ CNN Training')
#parser.add_argument('--model', type=str, default='VGG19', help='CNN architecture')
parser.add_argument('--dataset', type=str, default='CK+', help='dataset')
parser.add_argument('--fold', default=1, type=int, help='k fold number')
parser.add_argument('--bs', default=128, type=int, help='batch_size')
parser.add_argument('--lr', default=0.001, type=float, help='learning rate')
parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint')
opt = parser.parse_args()
use_cuda = torch.cuda.is_available()
best_Test_acc = 0 # best PrivateTest accuracy
best_Test_acc_epoch = 0
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
learning_rate_decay_start = 20 # 50
learning_rate_decay_every = 1 # 5
learning_rate_decay_rate = 0.8 # 0.9
total_epoch = 500
bs = 128
input_size = 64
cut_size = input_size - 1
n_class=7
#path = os.path.join(opt.dataset + '_' + opt.model, str(opt.fold))
path = './AffectNet+ShuffleNetV2/'
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.Resize(input_size),
transforms.RandomCrop(cut_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
#transforms.Normalize((0.485,0.456,0.406), (0.229,0.224,0.225))
])
transform_test = transforms.Compose([
transforms.Resize(input_size),
#transforms.RandomCrop(cut_size),
#transforms.RandomHorizontalFlip(),
transforms.TenCrop(cut_size),
transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])),
#transforms.ToTensor(),
#transforms.Normalize((0.485,0.456,0.406), (0.229,0.224,0.225))
])
#trainset=torchvision.datasets.ImageFolder(train_data,transform_train)
trainset = ListDataset(root='../train_val_imgs/Manually/Manually_train_croped/', list_file='./AffectNet/train.txt', transform=transform_train)
trainloader=DataLoader(trainset,bs,shuffle=True, num_workers=12)
#testset=torchvision.datasets.ImageFolder(test_data,transform_test)
testset = ListDataset(root='../train_val_imgs/Manually/Manually_validation_croped/', list_file='./AffectNet/val.txt', transform=transform_test)
testloader=DataLoader(testset,batch_size=128,shuffle=True, num_workers=12)
net = ShuffleNetV2(input_size,n_class)
'''
model_summary(net,input_size=(3,input_size,input_size))
flops, params = get_model_complexity_info(net, (input_size, input_size), as_strings=True, print_per_layer_stat=False)
print('Flops: ' + flops)
print('Params: ' + params)
#net = net.to(device=my_device)
'''
if opt.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir(path), 'Error: no checkpoint directory found!'
checkpoint = torch.load(os.path.join(path,'ShuffleNetV2.pth'))
net.load_state_dict(checkpoint['net'])
best_Test_acc = checkpoint['best_Test_acc']
best_Test_acc_epoch = checkpoint['best_Test_acc_epoch']
start_epoch = best_Test_acc_epoch + 1
else:
print('==> Building model..')
if use_cuda:
net.cuda()
criterion = nn.CrossEntropyLoss()
optimizer=optim.AdaBound(net.parameters(), lr=opt.lr, final_lr=0.1)
#optimizer = optim.SGD(net.parameters(), lr=opt.lr, momentum=0.9, weight_decay=1e-4)
# Training
def train(epoch):
print('\nEpoch: %d' % epoch)
global Train_acc
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
optimizer.zero_grad()
#inputs, targets = Variable(inputs), Variable(targets)
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
utils.clip_gradient(optimizer, 0.1) #clip_gradient能有效了控制梯度爆炸的影响,使得最终的loss能下降到满意的结果
optimizer.step()
train_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
utils.progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
Train_acc = 100.*correct/total
# test
def test(epoch):
global Test_acc
global best_Test_acc
global best_Test_acc_epoch
net.eval()
PrivateTest_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(testloader):
bs, ncrops, c, h, w = np.shape(inputs)
inputs = inputs.view(-1, c, h, w)
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs), Variable(targets)
outputs = net(inputs)
outputs_avg = outputs.view(bs, ncrops, -1).mean(1) # avg over crops
loss = criterion(outputs_avg, targets)
PrivateTest_loss += loss.item()
_, predicted = torch.max(outputs_avg.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
utils.progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (PrivateTest_loss / (batch_idx + 1), \
100. * correct / total, correct, total))
# Save checkpoint.
Test_acc = 100.*correct/total
if Test_acc > best_Test_acc:
print('Saving..')
print("best_Test_acc: %0.3f" % Test_acc)
state = {'net': net.state_dict() if use_cuda else net,
'best_Test_acc': Test_acc,
'best_Test_acc_epoch': epoch,
}
if not os.path.isdir(opt.dataset + '_' + 'ShuffleNetV2'):
os.mkdir(opt.dataset + '_' + 'ShuffleNetV2')
if not os.path.isdir(path):
os.mkdir(path)
#torch.save(state, os.path.join(path, str(best_Test_acc) + '_ShuffleNetV2.pth'))
best_Test_acc = Test_acc
best_Test_acc_epoch = epoch
torch.save(state, os.path.join(path, str(best_Test_acc) + '_'+str(input_size)+'_ShuffleNetV2.pth'))
for epoch in range(start_epoch, total_epoch):
train(epoch)
test(epoch)
print("best_Test_acc: %0.3f" % best_Test_acc)
print("best_Test_acc_epoch: %d" % best_Test_acc_epoch)