forked from haoel/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ArithmeticSlices.cpp
72 lines (68 loc) · 2.39 KB
/
ArithmeticSlices.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
// Source : https://leetcode.com/problems/arithmetic-slices/
// Author : Hao Chen
// Date : 2016-11-13
/***************************************************************************************
*
* A sequence of number is called arithmetic if it consists of at least three elements
* and if the difference between any two consecutive elements is the same.
*
* For example, these are arithmetic sequence:
* 1, 3, 5, 7, 9
* 7, 7, 7, 7
* 3, -1, -5, -9
*
* The following sequence is not arithmetic. 1, 1, 2, 5, 7
*
* A zero-indexed array A consisting of N numbers is given. A slice of that array is
* any pair of integers (P, Q) such that 0
*
* A slice (P, Q) of array A is called arithmetic if the sequence:
* A[P], A[p + 1], ..., A[Q - 1], A[Q] is arithmetic. In particular, this means
* that P + 1
*
* The function should return the number of arithmetic slices in the array A.
*
* Example:
*
* A = [1, 2, 3, 4]
*
* return: 3, for 3 arithmetic slices in A: [1, 2, 3], [2, 3, 4] and [1, 2, 3, 4]
* itself.
***************************************************************************************/
class Solution {
public:
//
// It's easy to find out how many 3-length slices in an arithmetic array with N length.
//
// len = 3, then 1 slices, sum(1)
// len = 4, then 3 slices, sum(1,2) - TWO 3-length slices + ONE 4-length slice
// len = 5, then 6 slices, sum(1,2,3) - THREE 3-length slices + TWO 4-length slices + ONE 5-length slice
// len = 6, then 10 slices, sum(1,2,3,4) - ...
// len = 7, then 15 slices, sum(1,2,3,4,5) - ..
//
// So, with N length arithmetic array, there are Sum[1, N-3+1] 3-length slices
//
// And, we know the formula sum from 1 to n is:
//
// n * ( n + 1 )
// sum [1, n] = ---------------
// 2
// Then, we could have the solution - O(n) Time with O(1) Space
//
int sum1toN(int n) {
return n * (n+1) / 2;
}
int numberOfArithmeticSlices(vector<int>& A) {
int result = 0;
int len = 0; // the current length of arithmetic
for (int i=2; i<A.size(); i++) {
if (A[i] - A[i-1] == A[i-1] - A[i-2]) {
len++;
}else{
result += sum1toN(len);
len=0;
}
}
return len==0 ? result : result + sum1toN(len);
}
};