forked from wei-miao/Drone-video-recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
385 lines (325 loc) · 13.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import argparse
import os
import sys
import cv2
import numpy as np
from PyQt5.QtWidgets import (QApplication, QDesktopWidget, QFileDialog,
QHBoxLayout, QLabel, QLineEdit, QMessageBox,
QProgressBar, QPushButton, QVBoxLayout, QWidget)
import imutils
class MyWindow(QWidget):
def __init__(self):
super(MyWindow, self).__init__()
self.makeStatus = 2 # 1表示正在处理视频,2表示不在处理视频
self.initUI()
def initUI(self):
'''初始化UI'''
# 选择视频文件的布局
selectFileBox = QHBoxLayout()
# 提示
selectFileLabel = QLabel("视频文件: ")
# 输入框
self.selectFileLineEdit = QLineEdit()
# 按钮
selectFileButton = QPushButton(self)
selectFileButton.setObjectName("selectFileButton")
selectFileButton.setText("选择")
selectFileButton.clicked.connect(self.selectFile)
# selectFileButton.move(50, 50)
# 把各个部件添加到布局中
selectFileBox.addStretch(1)
selectFileBox.addWidget(selectFileLabel)
selectFileBox.addWidget(self.selectFileLineEdit)
selectFileBox.addWidget(selectFileButton)
selectFileBox.addStretch(1)
# 选择输出视频路径的布局
selectDirBox = QHBoxLayout()
# 提示
selectDirLabel = QLabel("输出路径: ")
# 输入框
self.selectDirLineEdit = QLineEdit()
# 按钮
selectDirButton = QPushButton(self)
selectDirButton.setObjectName("selectDirButton")
selectDirButton.setText("选取文件夹")
selectDirButton.clicked.connect(self.selectDir)
# selectDirButton.move(50, 100)
# 把各个部件添加到布局中
selectDirBox.addStretch(1)
selectDirBox.addWidget(selectDirLabel)
selectDirBox.addWidget(self.selectDirLineEdit)
selectDirBox.addWidget(selectDirButton)
selectDirBox.addStretch(1)
# 开始按钮布局
startBox = QHBoxLayout()
# 按钮
self.startButton = QPushButton(self)
self.startButton.setObjectName("startButton")
self.startButton.setText("开始识别")
self.startButton.setMinimumWidth(256)
self.startButton.clicked.connect(self.startRecognition)
# 把各个部件添加到布局中
startBox.addStretch(1)
startBox.addWidget(self.startButton)
startBox.addStretch(1)
# 进度条布局
pbarBox = QHBoxLayout()
# 进度条
self.pbar = QProgressBar(self)
self.pbar.setMinimumWidth(256)
self.pbar.hide()
# 把各个部件添加到布局中
pbarBox.addStretch(1)
pbarBox.addWidget(self.pbar)
pbarBox.addStretch(1)
# 把上面那些布局添加到主布局中
mainBox = QVBoxLayout()
mainBox.addStretch(1)
mainBox.addLayout(selectFileBox)
mainBox.addLayout(selectDirBox)
mainBox.addLayout(startBox)
mainBox.addLayout(pbarBox)
mainBox.addStretch(1)
self.setLayout(mainBox)
self.setGeometry(300, 300, 300, 150)
self.setWindowTitle('无人机视频流识别')
# self.setWindowIcon(QIcon('./web.png')) # 设置窗口的图标
self.center()
def center(self):
'''主窗口居中显示'''
screen = QDesktopWidget().screenGeometry()
size = self.geometry()
self.move((screen.width() - size.width()) / 2,
(screen.height() - size.height()) / 2)
def alert(self, info):
'''弹出提示'''
QMessageBox.information(self, " ", info)
def selectFile(self):
'''选取单个文件'''
fileName, filetype = QFileDialog.getOpenFileName(
self, "选取文件", "", "All Files (*);;") # 设置文件扩展名过滤,注意用双分号间隔
self.selectFileLineEdit.setText(fileName) # 设置输入框的值
# print(self.selectFileLineEdit.text()) # 打印输入框的值
def selectDir(self):
'''选取文件夹'''
directory = QFileDialog.getExistingDirectory(
self, "选取文件夹", "D:/pythonCode/") # 起始路径
self.selectDirLineEdit.setText(directory) # 设置输入框的值
# print(self.selectDirLineEdit.text()) # 打印输入框的值
def startRecognition(self):
'''开始处理视频'''
# 如果是停止识别
if self.makeStatus == 1:
# 设置处理状态和按钮文字
self.makeStatus = 2
self.startButton.setText("开始识别")
return
# 设置处理状态和按钮文字
self.makeStatus = 1
self.startButton.setText("停止识别")
input_video_path = self.selectFileLineEdit.text() # 输入视频路径
out_video_path = self.selectDirLineEdit.text() # 输出路径或者要输出到的文件夹
# 判断输入视频是否可读
if not os.access(input_video_path, os.R_OK):
self.alert("选择的视频文件不可读或不存在!")
# 设置处理状态和按钮文字
self.makeStatus = 2
self.startButton.setText("开始识别")
return
# 处理输出路径
if os.path.isdir(out_video_path):
# 输出视频路径是文件夹
dir_name, file_name = os.path.split(
input_video_path) # 获取输入视频文件名(带后缀)
fname, fename = os.path.splitext(file_name) # 获取输入视频文件名(不带后缀)和后缀名
file_name = fname + "_detection" + fename # 新的文件名
out_video_path = os.path.join(
out_video_path, file_name) # 拼接输出视频地址和新的文件名
elif os.path.isfile(out_video_path):
# 输出视频路径是文件,判断是否可写
if not os.access(out_video_path, os.W_OK):
# 不可写
self.alert("输出文件不可写!")
# 设置处理状态和按钮文字
self.makeStatus = 2
self.startButton.setText("开始识别")
return
else:
# 不是视频也不是文件,尝试创建
try:
file = open(out_video_path, 'w')
file.close()
except:
self.alert("无法创建输出文件!")
# 设置处理状态和按钮文字
self.makeStatus = 2
self.startButton.setText("开始识别")
return
# 初始化进度条
self.step = 1
self.pbar.setValue(self.step)
self.pbar.show()
re = self.makeVideo(input_video_path, out_video_path)
if re == 1:
self.alert('处理完成')
elif re == 2:
self.alert('已停止')
else:
self.alert('处理失败')
# 设置处理状态和按钮文字
self.makeStatus = 2
self.startButton.setText("开始识别")
# 隐藏进度条
self.pbar.hide()
def makeVideo(self, input_video_path, out_video_path):
'''在原视频找到无人机并生成用红框圈出无人机的视频
Args:
input_video_path: 原视频路径
out_video_path: 输出视频到什么位置
'''
# 视频来源
cap = cv2.VideoCapture(input_video_path)
# 定义编解码器,创建VideoWriter 对象
fps = cap.get(cv2.CAP_PROP_FPS) # 获取原视频fps
size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(
cap.get(cv2.CAP_PROP_FRAME_HEIGHT))) # 获取原视频尺寸
fourcc = cv2.VideoWriter_fourcc(*'XVID') # 指定输出的视频格式,可以用-1表示选取
out = cv2.VideoWriter(out_video_path, fourcc, fps, size)
# 获取视频总帧数
count_frame = cap.get(cv2.CAP_PROP_FRAME_COUNT)
print('\n----------------------\n视频总帧数: ', count_frame)
self.pbar.setMaximum(count_frame) # 设置进度条总长度位视频总帧数
# 读取正负样本存入list
pos_dir = './sample/pos/'
neg_dir = './sample/neg/'
listPos = []
listNeg = []
# 读正样本存入listPos
for _, _, files in os.walk(pos_dir):
for f in files:
pos = cv2.imread(pos_dir + f, 0)
listPos.append(pos)
# 读负样本存入listNeg
for _, _, files in os.walk(neg_dir):
for f in files:
neg = cv2.imread(neg_dir + f, 0)
listNeg.append(neg)
while cap.isOpened():
# 如果被停止了(按了停止识别)
if self.makeStatus == 2:
return 2
ok, frame = cap.read() # 读取一帧数据
if not ok:
break
# 转为灰度图
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (21, 21), 0)
# 每隔三帧做一次判断
if(self.step % 3 == 1):
firstFrame = gray
if(self.step % 3 == 2):
twoFrame = gray
if(self.step % 3 == 0):
threeFrame = gray
# 做帧差
frameData1 = cv2.absdiff(firstFrame, twoFrame)
frameData2 = cv2.absdiff(twoFrame, threeFrame)
# 二进制阈值化
thresh1 = cv2.threshold(
frameData1, 50, 255, cv2.THRESH_BINARY)[1]
thresh2 = cv2.threshold(
frameData2, 50, 255, cv2.THRESH_BINARY)[1]
# 膨胀
thresh1 = cv2.dilate(thresh1, None, iterations=4)
thresh1 = cv2.dilate(thresh2, None, iterations=4)
result = cv2.bitwise_and(thresh1, thresh2)
result = cv2.dilate(result, None, iterations=13)
# 找到图像上的轮廓
(_, cnts, _) = cv2.findContours(result.copy(),
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 遍历轮廓
for kk in cnts:
# 计算轮廓的边界框,在当前帧中画出该框
(x, y, w, h) = cv2.boundingRect(kk)
# 对x和y减30,确保范围足够
if x > 30:
x -= 30
else:
x = 0
if y > 30:
y -= 30
else:
y = 0
# 计算xy偏移量
if x + w + 60 > size[0]:
xw = size[0]
else:
xw = x + w + 60
if y + w + 60 > size[1]:
yh = size[1]
else:
yh = y + w + 60
moving = frame[x:xw, y:yh] # 检测到的移动物体
# 如果是空的,就跳过
if len(moving) < 1:
continue
# 判断是否为无人机,如果是,圈出红框
if self.IsDrone(moving,listPos,listNeg):
cv2.rectangle(frame, (x-30, y-30),
(x + w + 60, y + h + 60), (0, 0, 255), 1)
cv2.imshow('frame',frame)
out.write(frame)
# 更新进度
self.step += 1
self.pbar.setValue(self.step)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放摄像头并销毁所有窗口
cap.release()
out.release()
cv2.destroyAllWindows()
return 1
def IsDrone(self, img,listPos,listNeg):
''' 对比传入的图片和样本,返回图片是否为无人机 '''
# 对比所有正样本取相似度最高值
posNum = 0
for f in listPos:
num = self.match(img, f)
if posNum < num:
posNum = num
# 对比所有负样本取相似度最高值
negNum = 1
for f in listNeg:
num = self.match(img, f)
if negNum < num:
negNum = num
if posNum > negNum:
return True
else:
return False
def match(self, img1, img2):
''' 对比两张图片,返回相似度 '''
# 使用SIFT检测角点
sift = cv2.xfeatures2d.SIFT_create()
# 获取关键点和描述符
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)
# 定义FLANN匹配器
index_params = dict(algorithm=1, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
# 使用KNN算法匹配
matches = flann.knnMatch(des1, des2, k=2)
# 去除错误匹配
good = []
for m, n in matches:
if m.distance < 0.7*n.distance:
good.append(m)
return len(good)
if __name__ == '__main__':
app = QApplication(sys.argv)
myshow = MyWindow()
myshow.show()
sys.exit(app.exec_())