-
Notifications
You must be signed in to change notification settings - Fork 0
/
gat.py
262 lines (238 loc) · 10.7 KB
/
gat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import torch
import torch.nn as nn
import dgl.function as fn
from dgl.utils import expand_as_pair
from dgl.nn.pytorch.utils import Identity
from dgl._ffi.base import DGLError
from dgl.nn.pytorch import edge_softmax
class GATConv(nn.Module):
def __init__(self,
in_feats,
out_feats,
num_heads,
feat_drop=0.,
attn_drop=0.,
edge_drop=0.0,
negative_slope=0.2,
residual=False,
activation=None,
allow_zero_in_degree=False,
use_labels = False,
bias=True):
super(GATConv, self).__init__()
self._num_heads = num_heads
self._in_src_feats, self._in_dst_feats = expand_as_pair(in_feats)
self._out_feats = out_feats
self._allow_zero_in_degree = allow_zero_in_degree
self.use_labels = use_labels
if isinstance(in_feats, tuple):
self.fc_src = nn.Linear(
self._in_src_feats, out_feats * num_heads, bias=False)
self.fc_dst = nn.Linear(
self._in_dst_feats, out_feats * num_heads, bias=False)
else:
self.fc = nn.Linear(
self._in_src_feats, out_feats * num_heads, bias=False)
self.attn_l = nn.Parameter(torch.FloatTensor(size=(1, num_heads, out_feats)))
self.attn_r = nn.Parameter(torch.FloatTensor(size=(1, num_heads, out_feats)))
self.feat_drop = nn.Dropout(feat_drop)
self.attn_drop = nn.Dropout(attn_drop)
self.edge_drop = edge_drop
self.leaky_relu = nn.LeakyReLU(negative_slope)
if bias:
self.bias = nn.Parameter(torch.FloatTensor(size=(num_heads * out_feats,)))
else:
self.register_buffer('bias', None)
if residual:
if self._in_dst_feats != out_feats:
self.res_fc = nn.Linear(
self._in_dst_feats, num_heads * out_feats, bias=False)
else:
self.res_fc = Identity()
else:
self.register_buffer('res_fc', None)
self.reset_parameters()
self.activation = activation
def reset_parameters(self):
"""
Description
-----------
Reinitialize learnable parameters.
Note
----
The fc weights :math:`W^{(l)}` are initialized using Glorot uniform initialization.
The attention weights are using xavier initialization method.
"""
gain = nn.init.calculate_gain('relu')
if hasattr(self, 'fc'):
nn.init.xavier_normal_(self.fc.weight, gain=gain)
else:
nn.init.xavier_normal_(self.fc_src.weight, gain=gain)
nn.init.xavier_normal_(self.fc_dst.weight, gain=gain)
nn.init.xavier_normal_(self.attn_l, gain=gain)
nn.init.xavier_normal_(self.attn_r, gain=gain)
nn.init.constant_(self.bias, 0)
if isinstance(self.res_fc, nn.Linear):
nn.init.xavier_normal_(self.res_fc.weight, gain=gain)
def set_allow_zero_in_degree(self, set_value):
r"""
Description
-----------
Set allow_zero_in_degree flag.
Parameters
----------
set_value : bool
The value to be set to the flag.
"""
self._allow_zero_in_degree = set_value
def forward(self, graph, feat, y=0, get_attention=False):
r"""
Description
-----------
Compute graph attention network layer.
Parameters
----------
graph : DGLGraph
The graph.
feat : torch.Tensor or pair of torch.Tensor
If a torch.Tensor is given, the input feature of shape :math:`(N, D_{in})` where
:math:`D_{in}` is size of input feature, :math:`N` is the number of nodes.
If a pair of torch.Tensor is given, the pair must contain two tensors of shape
:math:`(N_{in}, D_{in_{src}})` and :math:`(N_{out}, D_{in_{dst}})`.
get_attention : bool, optional
Whether to return the attention values. Default to False.
Returns
-------
torch.Tensor
The output feature of shape :math:`(N, H, D_{out})` where :math:`H`
is the number of heads, and :math:`D_{out}` is size of output feature.
torch.Tensor, optional
The attention values of shape :math:`(E, H, 1)`, where :math:`E` is the number of
edges. This is returned only when :attr:`get_attention` is ``True``.
Raises
------
DGLError
If there are 0-in-degree nodes in the input graph, it will raise DGLError
since no message will be passed to those nodes. This will cause invalid output.
The error can be ignored by setting ``allow_zero_in_degree`` parameter to ``True``.
"""
if self.use_lpa == True:
y = feat[:, self._in_src_feats:self._in_src_feats+self._out_feats]
feat = feat[:, :self._in_src_feats]
else:
y = 0
with graph.local_scope(): # not override the existing data
if not self._allow_zero_in_degree:
if (graph.in_degrees() == 0).any():
raise DGLError('There are 0-in-degree nodes in the graph, '
'output for those nodes will be invalid. '
'This is harmful for some applications, '
'causing silent performance regression. '
'Adding self-loop on the input graph by '
'calling `g = dgl.add_self_loop(g)` will resolve '
'the issue. Setting ``allow_zero_in_degree`` '
'to be `True` when constructing this module will '
'suppress the check and let the code run.')
if isinstance(feat, tuple):
h_src = self.feat_drop(feat[0])
h_dst = self.feat_drop(feat[1])
if not hasattr(self, 'fc_src'):
feat_src = self.fc(h_src).view(-1, self._num_heads, self._out_feats)
feat_dst = self.fc(h_dst).view(-1, self._num_heads, self._out_feats)
else:
feat_src = self.fc_src(h_src).view(-1, self._num_heads, self._out_feats)
feat_dst = self.fc_dst(h_dst).view(-1, self._num_heads, self._out_feats)
else:
h_src = h_dst = self.feat_drop(feat)
feat_src = feat_dst = self.fc(h_src).view(
-1, self._num_heads, self._out_feats)
if graph.is_block:
feat_dst = feat_src[:graph.number_of_dst_nodes()]
# NOTE: GAT paper uses "first concatenation then linear projection"
# to compute attention scores, while ours is "first projection then
# addition", the two approaches are mathematically equivalent:
# We decompose the weight vector a mentioned in the paper into
# [a_l || a_r], then
# a^T [Wh_i || Wh_j] = a_l Wh_i + a_r Wh_j
# Our implementation is much efficient because we do not need to
# save [Wh_i || Wh_j] on edges, which is not memory-efficient. Plus,
# addition could be optimized with DGL's built-in function u_add_v,
# which further speeds up computation and saves memory footprint.
el = (feat_src * self.attn_l).sum(dim=-1).unsqueeze(-1)
er = (feat_dst * self.attn_r).sum(dim=-1).unsqueeze(-1)
graph.srcdata.update({'ft': feat_src, 'el': el})
graph.dstdata.update({'er': er})
# compute edge attention, el and er are a_l Wh_i and a_r Wh_j respectively.
graph.apply_edges(fn.u_add_v('el', 'er', 'e'))
e = self.leaky_relu(graph.edata.pop('e'))
# compute e_ij --initial attention weight
# drop edge
if self.training and self.edge_drop > 0:
perm = torch.randperm(graph.number_of_edges(), device=e.device)
bound = int(graph.number_of_edges() * self.edge_drop)
eids = perm[bound:]
graph.edata["a"] = torch.zeros_like(e)
graph.edata["a"][eids] = self.attn_drop(edge_softmax(graph, e[eids], eids=eids))
# compute softmax
else:
graph.edata['a'] = self.attn_drop(edge_softmax(graph, e))
# message passing
graph.update_all(fn.u_mul_e('ft', 'a', 'm'),
fn.sum('m', 'ft'))
rst = graph.dstdata['ft']
# LPA prediction
if self.use_labels == True:
graph.srcdata.update({'label': y})
graph.update_all(fn.u_mul_e('label', 'a', 'm'),
fn.sum('m', 'label'))
y_pred = graph.dstdata['label']
# residual
if self.res_fc is not None:
resval = self.res_fc(h_dst).view(h_dst.shape[0], self._num_heads, self._out_feats)
rst = rst + resval
# bias
if self.bias is not None:
rst = rst + self.bias.view(1, self._num_heads, self._out_feats)
# activation
if self.activation:
rst = self.activation(rst)
if self.use_labels == True:
if get_attention:
return rst, y_pred, graph.edata['a']
else:
return rst, y_pred
else:
if get_attention:
return rst, graph.edata['a']
else:
return rst
class ElementWiseLinear(nn.Module):
def __init__(self, size, weight=True, bias=True, inplace=False):
super().__init__()
if weight:
self.weight = nn.Parameter(torch.Tensor(size))
else:
self.weight = None
if bias:
self.bias = nn.Parameter(torch.Tensor(size))
else:
self.bias = None
self.inplace = inplace
self.reset_parameters()
def reset_parameters(self):
if self.weight is not None:
nn.init.ones_(self.weight)
if self.bias is not None:
nn.init.zeros_(self.bias)
def forward(self, x):
if self.inplace:
if self.weight is not None:
x.mul_(self.weight)
if self.bias is not None:
x.add_(self.bias)
else:
if self.weight is not None:
x = x * self.weight
if self.bias is not None:
x = x + self.bias
return x