Skip to content

xtLyu/Federated-Learning-Backdoor

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 

Repository files navigation

Neurotoxin

This repository implements the paper "Neurotoxin: Durable Backdoors in Federated Learning". It includes a federated learning simulation and all the models and datasets necessary to implement our paper. The code runs on Python 3.9.7 with PyTorch 1.9.1 and torchvision 0.10.1.

FL_Backdoor_NLP

For NLP tasks, first download the Reddit dataset from the Repo https://github.com/ebagdasa/backdoor_federated_learning, and save it in the /data/ folder.

You can run the following command to run standard FL training without any attackers, and save checkpoints that will be useful for conducting attack experiments quickly.

nohup python main_training.py --params utils/words_reddit_lstm.yaml --run_name Reddit_LSTM_SentenceId0 --GPU_id 1 --gradmask_ratio 1.0 --start_epoch 1 --PGD 0 --semantic_target True -same_structure --diff_privacy True --s_norm 3.0 --sentence_id_list 0 --lastwords 1

Under our threat model, attacks should be conducted towards the end of training. If you want the attacker to participate in FL from the 2000-th round, we need to make sure that the above code has been executed and the 2000-th round of the checkpoint is saved. Then, you can use the following command to run the experiment:

nohup python main_training.py --params utils/words_reddit_lstm.yaml --run_name Reddit_LSTM_Baseline_PLr0.02_AttackNum40_Snorm3.0_nlastwords1_SentenceId0 --GPU_id 1 --gradmask_ratio 1.0 --is_poison True --poison_lr 0.02 --start_epoch 2000 --semantic_target True --attack_num 40 --same_structure True --aggregate_all_layer 1 --diff_privacy True --s_norm 3.0 --sentence_id_list 0 --lastwords 1

nohup python main_training.py --params utils/words_reddit_lstm.yaml --run_name Reddit_LSTM_Neurotoxin_GradMaskRatio0.95_PLr0.12_AttackNum40_Snorm3.0_nlastwords1_SentenceId0 --GPU_id 1 --gradmask_ratio 0.95 --is_poison True --poison_lr 0.12 --start_epoch 2000 --semantic_target True --attack_num 40 --same_structure True --aggregate_all_layer 1 --diff_privacy True --s_norm 3.0 --sentence_id_list 0 --lastwords 1

Parameters:

--gradmask_ratio: Top-ratio weights will be retained. If gradmask_ratio = 1, the GradMask is not used.

--poison_lr: learning rate of bakcdoor training.

--attack_num: the number of times the attacker participated in FL

--start_epoch: attacker starts to engage in FL in round start_epoch

--s_norm: the parameter used to perform norm clip

--run_name: the name of the experiment, can be customized

--params: experimental configuration file (these files are saved at /utils, one can change the configuration parameters in it as needed)

You also can run the following .sh files in /FL_Backdoor_NLP to reproduce our experimental results of all NLP tasks.

nohup bash run_NLP_tasks.sh

The results will be saved at /saved_benign_loss, /saved_benign_acc, /saved_backdoor_acc, and saved_backdoor_loss.

FL_Backdoor_CV

For CV task, the Cifar10/Cifar100/EMNIST datasets should be saved in the /data/ folder. Our code also supports edge case backdoor attacks, you can download the corresponding edge case images by following https://github.com/ksreenivasan/OOD_Federated_Learning

You can run the following command to run the standard FL training without any attackers, and save some checkpoints.

nohup python main_training.py --run_slurm 0 --GPU_id 0 --start_epoch 1 --attack_num 250 --gradmask_ratio 1.0 --edge_case 0

If you want the attacker to participate in FL from the 1800-th round, we need to make sure that the above code has been executed and the 1800-th round of the checkpoint is saved. Then, you can use the following command to run the experiment:

nohup python main_training.py --run_slurm 0 --GPU_id 0 --start_epoch 1801 --is_poison True --s_norm 0.2 --attack_num 250 --gradmask_ratio 1.0 --poison_lr 0.003 --aggregate_all_layer 1 --edge_case 0

nohup python main_training.py --run_slurm 0 --GPU_id 1 --start_epoch 1801 --is_poison True --s_norm 0.2 --attack_num 250 --gradmask_ratio 0.95 --poison_lr 0.02 --aggregate_all_layer 1 --edge_case 0

Parameters:

--gradmask_ratio: Top-ratio weights will be retained. If gradmask_ratio = 1, the GradMask is not used.

--poison_lr: learning rate of bakcdoor training.

--edge_case: 0 means using base case trigger set, 1 means using edge case trigger set.

You also can run the following .sh file in /FL_Backdoor_CV to reproduce our experimental results of all CV tasks.

nohup bash run_backdoor_cv_task.sh

When the backdoor attack experiment is over, you can use the checkpoint generated during training to calculate the Hessian trace of the poisoned global model:

nohup python Hessian_cv.py --is_poison True --start_epoch 1 --gradmask_ratio 1.0

nohup python Hessian_cv.py --is_poison True --start_epoch 1 --gradmask_ratio 0.95

Citation

We appreciate it if you would please cite the following paper if you found the repository useful for your work:

@inproceedings{zhang2022neurotoxin,
  title={Neurotoxin: Durable Backdoors in Federated Learning},
  author={Zhang*, Zhengming and Panda*, Ashwinee and Song, Linyue and Yang, Yaoqing and Mahoney, Michael W and Gonzalez, Joseph E and Ramchandran, Kannan and Mittal, Prateek},
  booktitle={International Conference on Machine Learning},
  year={2022}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.1%
  • Shell 0.9%