Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Experimental result #1

Open
1292765944 opened this issue May 9, 2017 · 6 comments
Open

Experimental result #1

1292765944 opened this issue May 9, 2017 · 6 comments

Comments

@1292765944
Copy link

Cool code! I wonder whether you have reimplemented the exact results of the FPN paper?

Best!
guangxing

@Yc174
Copy link

Yc174 commented Jul 13, 2017

Have you trained this ?Can you tell me the results? @1292765944

@xmyqsh
Copy link
Owner

xmyqsh commented Jul 20, 2017

I'm starting training...

@chl916185
Copy link

When I was loading the trained model,I met this error:
Traceback (most recent call last):
File "./faster_rcnn/test_net.py", line 44, in
network = get_network(network_name)
File "./faster_rcnn/../lib/networks/factory.py", line 19, in get_network
return FPN_test()
File "./faster_rcnn/../lib/networks/FPN_test.py", line 26, in init
self.setup()
File "./faster_rcnn/../lib/networks/FPN_test.py", line 356, in setup
.fc(n_classes, relu=False, name='cls_score'))
File "./faster_rcnn/../lib/networks/network.py", line 34, in layer_decorated
layer_output = op(self, layer_input, *args, **kwargs)
File "./faster_rcnn/../lib/networks/network.py", line 407, in fc
regularizer=self.l2_regularizer(cfg.TRAIN.WEIGHT_DECAY))
File "./faster_rcnn/../lib/networks/network.py", line 97, in make_var
return tf.get_variable(name, shape, initializer=initializer, trainable=trainable, regularizer=regularizer)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/variable_scope.py", line 988, in get_variable
custom_getter=custom_getter)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/variable_scope.py", line 890, in get_variable
custom_getter=custom_getter)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/variable_scope.py", line 348, in get_variable
validate_shape=validate_shape)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/variable_scope.py", line 333, in _true_getter
caching_device=caching_device, validate_shape=validate_shape)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/variable_scope.py", line 639, in _get_single_variable
name, "".join(traceback.format_list(tb))))
ValueError: Variable cls_score/weights already exists, disallowed. Did you mean to set reuse=True in VarScope? Originally defined at:

File "./faster_rcnn/../lib/networks/network.py", line 97, in make_var
return tf.get_variable(name, shape, initializer=initializer, trainable=trainable, regularizer=regularizer)
File "./faster_rcnn/../lib/networks/network.py", line 407, in fc
regularizer=self.l2_regularizer(cfg.TRAIN.WEIGHT_DECAY))
File "./faster_rcnn/../lib/networks/network.py", line 34, in layer_decorated
layer_output = op(self, layer_input, *args, **kwargs)

The reason is that:
#========= RCNN ============
.fc(n_classes, relu=False, name='cls_score'))
in lib/networks/FPN_test.py.
@xmyqsh

@xmyqsh
Copy link
Owner

xmyqsh commented Jul 24, 2017

@1292765944 @Yc174 @chl916185

train result, rpn_loss is on the fly...
What is the reason that may cause rpn_loss not converge, do you think ?

speed: 0.412s / iter
image: 2008_000307.jpg iter: 199870 / 200000, total loss: 21.4851, rpn_loss_cls: 1.2544, rpn_loss_box: 19.9337, loss_cls: 0.2095, loss_box: 0.0876, lr: 0.0000
00
speed: 0.401s / iter
image: 2008_005319.jpg iter: 199880 / 200000, total loss: 11.8511, rpn_loss_cls: 1.3227, rpn_loss_box: 10.2611, loss_cls: 0.2030, loss_box: 0.0643, lr: 0.0000
00
speed: 0.406s / iter
image: 006483.jpg iter: 199890 / 200000, total loss: 25.3140, rpn_loss_cls: 1.1014, rpn_loss_box: 24.0750, loss_cls: 0.1176, loss_box: 0.0201, lr: 0.000000
speed: 0.395s / iter
image: 002967.jpg iter: 199900 / 200000, total loss: 10.4668, rpn_loss_cls: 1.5063, rpn_loss_box: 8.6171, loss_cls: 0.2443, loss_box: 0.0990, lr: 0.000000
speed: 0.397s / iter
image: 2011_001198.jpg iter: 199910 / 200000, total loss: 14.9206, rpn_loss_cls: 1.4058, rpn_loss_box: 13.2595, loss_cls: 0.2015, loss_box: 0.0537, lr: 0.000000
speed: 0.380s / iter
image: 2008_003645.jpg iter: 199920 / 200000, total loss: 19.0740, rpn_loss_cls: 1.2057, rpn_loss_box: 17.1077, loss_cls: 0.5278, loss_box: 0.2328, lr: 0.000000
speed: 0.426s / iter
image: 005811.jpg iter: 199930 / 200000, total loss: 10.8934, rpn_loss_cls: 1.4540, rpn_loss_box: 9.0603, loss_cls: 0.2846, loss_box: 0.0945, lr: 0.000000
speed: 0.439s / iter
image: 2009_003860.jpg iter: 199940 / 200000, total loss: 14.3258, rpn_loss_cls: 1.6082, rpn_loss_box: 12.5498, loss_cls: 0.1635, loss_box: 0.0044, lr: 0.000000
speed: 0.388s / iter
image: 2011_000556.jpg iter: 199950 / 200000, total loss: 22.7038, rpn_loss_cls: 1.2282, rpn_loss_box: 20.8446, loss_cls: 0.3576, loss_box: 0.2734, lr: 0.000000
speed: 0.397s / iter
image: 2008_004585.jpg iter: 199960 / 200000, total loss: 11.1179, rpn_loss_cls: 1.3557, rpn_loss_box: 9.2402, loss_cls: 0.3512, loss_box: 0.1708, lr: 0.000000
speed: 0.346s / iter
image: 2008_000393.jpg iter: 199970 / 200000, total loss: 11.2609, rpn_loss_cls: 1.7995, rpn_loss_box: 8.7590, loss_cls: 0.4851, loss_box: 0.2173, lr: 0.000000
speed: 0.371s / iter
image: 2011_003081.jpg iter: 199980 / 200000, total loss: 10.4372, rpn_loss_cls: 1.4303, rpn_loss_box: 8.8616, loss_cls: 0.1440, loss_box: 0.0013, lr: 0.000000
speed: 0.342s / iter
image: 2008_007069.jpg iter: 199990 / 200000, total loss: 19.8492, rpn_loss_cls: 1.3173, rpn_loss_box: 18.3676, loss_cls: 0.1637, loss_box: 0.0005, lr: 0.000000
speed: 0.356s / iter

@chl916185
Copy link

the lr is 0.000000,why?
@xmyqsh

@1292765944
Copy link
Author

@xmyqsh I met similar problem. It is not easy to converge using the params in FPN paper. such as 800 pixels of the shorter side, including anchor boxes that are outside the image.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants