Skip to content

Latest commit

 

History

History
70 lines (64 loc) · 2.26 KB

README.md

File metadata and controls

70 lines (64 loc) · 2.26 KB

3D D-LKA Net

Instructions for the 3D D-LKA Net.

Environment Setup

  1. Create a new conda environment with python version 3.8.16:
    conda create -n "d_lka_net_3d" python=3.8.16
    conda activate d_lka_net_3d
  2. Install PyTorch and torchvision
    pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 --extra-index-url https://download.pytorch.org/whl/cu113
  3. Install the requirements with:
    pip install -r requirements.txt
  4. Install 3D deformable convolutions.
    cd dcn/
    bash make.sh

Model weights

You can download the learned weights of the D-LKA-Net in the following table.

Task Learned weights
Multi organ segmentation D-LKA Net
Pancreas D-LKA Net

Synapse Dataset

  1. Download the Synapse dataset from here: Synapse
  2. Rename each folder containing 'unetr_pp' to 'd_lka_former'. THIS IS IMPORTANT.
  3. Adjust the paths in the run_training_synappse.sh
  4. Run the following lines:
    cd 3D
    bash run_training_synapse.sh
  5. After the training is finished, run the evaluation:
    run_evaluation_synapse.sh

For further instructions, refer to the nnFormer repository.

Pancreas Dataset

  1. Download the pancreas dataset from here: dataset
  2. The folder structure should be as follows:
    /pancreas_code
    --/dataset_pancreas
    ----/Pancreas
    ----/PANCREAS_0001.h5
    .
    .
    .
    ----/PANCREAS_82.h5
  3. Adjust the paths in the train_pancreas.py file.
  4. Run
    cd 3D/pancreas_code
    python train_pancreas.py
  5. Test
    python test_pancreas.py