-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathgptpclock.c
1033 lines (926 loc) · 34.3 KB
/
gptpclock.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Excelfore gptp - Implementation of gPTP(IEEE 802.1AS)
* Copyright (C) 2019 Excelfore Corporation (https://excelfore.com)
*
* This file is part of Excelfore-gptp.
*
* Excelfore-gptp is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* Excelfore-gptp is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Excelfore-gptp. If not, see
* <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>.
*/
#include <fcntl.h>
#include <stdio.h>
#include <limits.h>
#include "gptpclock.h"
#include "gptpcommon.h"
/*
|------------------------+-------------+------------+-------------+------------|
| | HW PhaseAdj | HW FreqAdj | SW PhaseAdj | SW FreqAdj |
|------------------------+-------------+------------+-------------+------------|
| M:PTPCLOCK_MASTER | No | No | Yes | No |
| SM:PTPCLOCK_SLAVE_MAIN | Yes | Yes | No | No |
| SS:PTPCLOCK_SLAVE_SUB | No | No | Yes | Yes |
|------------------------+-------------+------------+-------------+------------|
HW PhaseAdj, FreqAdj: applied on ptp device(like /dev/ptp0) clock directly
SW PhaseAdj, FreqAdj: applied on software conversion
When there are 3 Network device and each one has independent PTP Clock device,
the clocks become as follows:
|-----+----------+--------------+---------------+--------------+--------------|
| | | masterClock | thisClock | | |
| TAS | | Clk0(M,ptp0) | Clk1(SM,ptp0) | Clk2(M,ptp1) | Clk3(M,ptp3) |
|-----+----------+--------------+---------------+--------------+--------------|
| D0 | PhaseAdj | SW | | | |
| | FreqAdj | by Clk1 | HW | | |
|-----+----------+--------------+---------------+--------------+--------------|
masterClock and thisClock work together to provide the ptp clock of 'D0 TAS'.
Because applying HW phase adjustment upset time-stamping, we never do it
other than the initialization time.
HW frequency adjustment is applied on 'thisClock',
the same adjustment is also applied on 'masterClock',
because they are based on the same 'ptp0' clock device.
'masterClock' is exported as 'ptp clock of D0', and by the SW PhaseAdj and
the HW FreqAdj, it shynchronize to 'GM clock'.
timestamps are always stamped by direct ptp device HW clock value.
In a single clock system, there is nothing complicated, and no conversions are needed.
For PdelayReq and PdelayResp, timestamps are used only for one port,
and timestamp value conversions are not needed.
(PdelayReq reception time and PdelayResp transmit time are always based on the same clock)
For Sync, which is received on one port and transmitted on the other port.
Two different clocks are possibly involved, and timestamp value conversions are required.
For the conversions, we use 'thisClock' as a common clock, and convert all timestamps to
'thisClcok' based value.
E.G. when a Sync message comes on port2, which is based on Clk2: SyncRecTS(clk2)
this Sync message propagates to the other ports.
When it is sent on port3, get a timestamp based on Clk3: SyncSendTS(clk3)
We convert those values:
SyncRecTS(clk2) --> SyncRecTS(thisClock)
SyncSendTS(clk3) --> SyncSendTS(thisClock)
Then, 'SyncSendTS(thisClock) - SyncRecTS(thisClock)' can be calculated for the correction field.
The things are more complicated for multiple domains.
case 1: 'thisClock of D0' and 'thisClock of D1' are based on different clocks.
|-----+----------+--------------+---------------+---------------+--------------|
| | | masterClock | thisClock | | |
| TAS | | Clk0(M,ptp0) | Clk1(SM,ptp0) | Clk2(M,ptp1) | Clk3(M,ptp3) |
|-----+----------+--------------+---------------+---------------+--------------|
| D0 | PhaseAdj | SW | | | |
| | FreqAdj | by Clk1 | HW | HW(D1) | |
|-----+----------+--------------+---------------+---------------+--------------|
| | | masterClock | | thisClock | |
| TAS | | Clk0(M,ptp1) | Clk1(M,ptp0) | Clk2(SM,ptp1) | Clk3(M,ptp3) |
|-----+----------+--------------+---------------+---------------+--------------|
| D1 | PhaseAdj | SW | | | |
| | FreqAdj | by Clk2 | HW(D0) | HW | |
|-----+----------+--------------+---------------+---------------+--------------|
case 2: 'thisClock of D0' and 'thisClock of D1' are based on the same clock.
|-----+----------+--------------+---------------+--------------+--------------|
| | | masterClock | thisClock | | |
| TAS | | Clk0(M,ptp0) | Clk1(SM,ptp0) | Clk2(M,ptp1) | Clk3(M,ptp3) |
|-----+----------+--------------+---------------+--------------+--------------|
| D0 | PhaseAdj | SW | | | |
| | FreqAdj | by Clk1 | HW | | |
|-----+----------+--------------+---------------+--------------+--------------|
| | | masterClock | thisClock | | |
| TAS | | Clk0(M,ptp0) | Clk1(SS,ptp0) | Clk2(M,ptp1) | Clk3(M,ptp3) |
|-----+----------+--------------+---------------+--------------+--------------|
| D1 | PhaseAdj | SW | | | |
| | FreqAdj | by Clk1 | SW+HW(D0) | | |
|-----+----------+--------------+---------------+--------------+--------------|
HW adjustment are always applied on the same clcok port for all domains.
For the same example,
D0 Sync propagation from port2 to port3 becomes as follows:
SyncRecTS(clk2D0) --> SyncRecTS(thisClockD0)
SyncSendTS(clk3D0) --> SyncSendTS(thisClockD0)
D1 Sync propagation from port2 to port3 becomes as follows:
SyncRecTS(clk2D1) --> SyncRecTS(thisClockD1)
SyncSendTS(clk3D1) --> SyncSendTS(thisClockD1)
domains other than D0, only 'masterClock' and 'thisClock' are needed,
and other clocks are not generated, and D0 clocks are used for them.
For the 'case 2' above, clk2D0 and clk3D0 are used for clk2D1 and clk3D1.
For the 'case 1' above, clk2D0 and clk2D1 are the same.
For D1, it becomes as follows:
D1 Sync propagation from port2 to port3 becomes as follows:
SyncRecTS(clk2D0) --> SyncRecTS(thisClockD1)
SyncSendTS(clk3D0) --> SyncSendTS(thisClockD1)
For 'case 2', thisClock(Clk1) for D1 has additional SW frequency adjustment.
It is not applied for timestamps, and timestamps are based on D0 clock.
When conversions of 'TS(thisClockD0) --> TS(thisClockD1)' are done,
the SW frequency adjustment is applied.
After all, whatever Sync timestamps, use D0 clock as source, and convert to 'thisClock of TAS'
TS(clkND0) --> TS(thisClock of TAS): 'thisClockD0 for D0', 'thisClockD1 for D1'
This works for all Sync TS conversions.
*/
/*
To sync between GM-D0 and GM-D1, use the case 2 above.
case 2: 'thisClock of D0' and 'thisClock of D1' are based on the same clock.
And when this device becomes GM in D1, set 0 for 'FreqAdj of thisClock of D1'.
Then Freq. of GM in D1 sync to Freq of GM in D0.
'phase of thisClock of D1' is synced to 'phase of thisClock of D0'
For this, 'adjrate' and 'last_setts64' must be shared by the shared memory,
and gptpmasterclock should be accesible for these values.
'adjrate' and 'last_setts64' for 'This Clock' is copied to shared memory.
Further more, when this device starts up and becomes GM of D0,
let this device become slave for D0 first and sync to existing GM,
after that this device takes over GM. With this way, there is no big jump in GM of D0.
When 'thisClock' is in PTPCLOCK_SLAVE_SUB mode, 'offset64' is used
on the clock. Even though it applies only 'adjrate' explicitly, SW frequency
adjustment updates the phase adjustment(offset64).
'offset64' of 'thisClock' and 'masterClock', the both of them must be maintained
separately, and the combined value must be copied into the shared memory.
*/
/*
switching of the active domain
Currently there is no rule for this in the standard.
We introduce 'active domain' with which applications get the ptp clock.
it is controled by GM status of each domain, and CONF_ACTIVE_DOMAIN_AUTO_SWITCH
*/
#define LASTGM_OFFSET64_INVALID LLONG_MAX
#define LASTGM_ADJVPPB_INVALID INT_MAX
typedef enum {
PTPCLOCK_MASTER = 0, // no adjustment
PTPCLOCK_SLAVE_MAIN, // hw adjustment(use clock_adjtime)
PTPCLOCK_SLAVE_SUB, // sw adjustment(use internal conversion)
} ptpclock_mode_t;
typedef struct oneclock_data {
gptp_clock_ppara_t *pp;
gptp_clock_ppara_t ppe;
int clockIndex;
ClockIdentity clockId;
PTPFD_TYPE ptpfd;
ptpclock_mode_t mode;
int domainIndex;
ptpclock_state_t state;
int64_t offset64; // this is not the same as pp->offset64
int64_t last_setts64; // this is not the same as pp->last_setts64
double adjrate; // this is not the same as pp->adjrate
int adjvppb;
int ts2diff;
uint32_t flags;
} oneclock_data_t;
typedef struct per_domain_data {
struct timespec last_gmch_ts;
bool waiting_d0_sync;
bool gm_stable;
bool we_are_gm;
uint8_t domainNumber; // put this, to get domainNumber from domainIndex
ClockIdentity gmClockId;
int thisClockIndex;
int thisClock_adjppb;
} per_domain_data_t;
struct gptpclock_data {
ub_esarray_cstd_t *clds;
int shmfd;
int shmsize;
gptp_master_clock_shm_t *shm;
per_domain_data_t *pdd;
int active_domain_switch;
};
static gptpclock_data_t gcd;
#define GPTPCLOCK_FN_ENTRY(od,clockIndex,domainNumber) { \
if(!gcd.clds) return -1; \
if((od=get_clockod(clockIndex, domainNumber))==NULL) return -1; \
if(!PTPFD_VALID(od->ptpfd)) return -1; \
}
static oneclock_data_t *get_clockod(int clockIndex, uint8_t domainNumber)
{
int i;
oneclock_data_t *od;
for(i=0;i<ub_esarray_ele_nums(gcd.clds);i++){
od = (oneclock_data_t *)ub_esarray_get_ele(gcd.clds, i);
if(od->clockIndex != clockIndex || od->pp->domainNumber != domainNumber) continue;
return od;
}
return NULL;
}
static int gptpclock_getts_od(int64_t *ts64, oneclock_data_t *od)
{
int64_t dts64=0;
double adjrate;
GPTP_CLOCK_GETTIME(od->ptpfd, *ts64);
if(!od->offset64) return 0;
adjrate=od->adjrate;
if(adjrate != 0.0){
// get dts, which is diff between now and last setts time
dts64=*ts64-od->last_setts64;
dts64=adjrate * (double)dts64;
UB_LOG(UBL_DEBUGV, "%s:applied SW adjrate, dts=%"PRIi64"nsec\n",
__func__, dts64);
}
// add offset
*ts64+=od->offset64;
*ts64+=dts64;
return 0;
}
static int gptpclock_setoffset_od(oneclock_data_t *od)
{
oneclock_data_t *od0, *odt;
if(od->mode==PTPCLOCK_MASTER){
od0=get_clockod(0, od->pp->domainNumber);
odt=get_clockod(gcd.pdd[od->domainIndex].thisClockIndex, od->pp->domainNumber);
if(odt && od==od0) {
// offset64 in the shm must be updated with the one of 'thisClock'
od->pp->offset64=od->offset64+odt->offset64;
}
}else if(od->mode==PTPCLOCK_SLAVE_SUB){
od0=get_clockod(0, od->pp->domainNumber);
odt=get_clockod(gcd.pdd[od->domainIndex].thisClockIndex, od->pp->domainNumber);
if(od0 && odt==od){
od0->pp->last_setts64=od->last_setts64;
od0->pp->offset64=od0->offset64+od->offset64;
}
}else{
return -1;
}
return 0;
}
static int gptpclock_setts_od(int64_t ts64, oneclock_data_t *od)
{
GPTP_CLOCK_GETTIME(od->ptpfd, od->last_setts64);
if(!od->clockIndex || od->mode==PTPCLOCK_SLAVE_SUB)
gptpclock_mutex_trylock(&gcd.shm->head.mcmutex);
od->offset64=ts64-od->last_setts64;
if(od->mode==PTPCLOCK_SLAVE_MAIN){
od->offset64=0;
GPTP_CLOCK_SETTIME(od->ptpfd, ts64);
}else{
gptpclock_setoffset_od(od);
}
if(!od->clockIndex || od->mode==PTPCLOCK_SLAVE_SUB)
CB_THREAD_MUTEX_UNLOCK(&gcd.shm->head.mcmutex);
GH_SET_GPTP_SHM;
return 0;
}
/* returns latency time in this function, if it is too long this setting is not accurate */
static int64_t time_setoffset64(int64_t ts64, int clockIndex, uint8_t domainNumber)
{
int64_t ats64=-1;
int64_t mt1,mt2;
oneclock_data_t *od;
GPTPCLOCK_FN_ENTRY(od, clockIndex, domainNumber);
mt1=ub_mt_gettime64();
gptpclock_getts_od(&ats64, od);
ats64 += ts64;
gptpclock_setts_od(ats64, od);
mt2=ub_mt_gettime64();
return mt2-mt1;
}
static int avarage_time_setoffset(int clockIndex, uint8_t domainNumber)
{
int64_t v;
int64_t vmax=0;
int av=0, avc;
int count=0;
int i;
for(i=0;i<10;i++){
v = time_setoffset64(0, clockIndex, domainNumber);
if(v > gptpconf_get_intitem(CONF_MAX_CONSEC_TS_DIFF)) continue;
if(llabs(vmax)<llabs(v)) vmax=v;
av += v;
count ++;
}
// remove max value
av-=vmax;
count--;
if(count<=0){
UB_LOG(UBL_ERROR, "%s:clockIndex=%d, domainNumber=%d,"
"can't calculate setoffset time\n",
__func__, clockIndex, domainNumber);
return 0;
}
av = av/count;
// it was measured in a short loop, and likely shorter value than real use case value.
avc = av*gptpconf_get_intitem(CONF_TS2DIFF_CACHE_FACTOR)/100;
UB_LOG(UBL_DEBUG, "%s:clockIndex=%d, domainNumber=%d,"
"calculate setoffset time av=%d, avc=%d, vmax=%"PRIi64"\n",
__func__, clockIndex, domainNumber, av, avc, vmax);
return avc;
}
#define PTPCLOCK_OPEN_TOUT 100 // msec
/* It is okay to use ptpdev which doesn't belong to portIndex.
In succh case, the mode shouldn't be SLAVE_MAIN */
int gptpclock_add_clock(int clockIndex, char *ptpdev, int domainIndex,
uint8_t domainNumber, ClockIdentity id)
{
int i;
oneclock_data_t *od;
if(!gcd.clds) return -1;
for(i=0;i<ub_esarray_ele_nums(gcd.clds);i++){
od = (oneclock_data_t *)ub_esarray_get_ele(gcd.clds, i);
if(od->clockIndex == clockIndex && od->pp->domainNumber == domainNumber){
UB_LOG(UBL_ERROR,"%s:already exists, clockIndex=%d, domainNumber=%d\n",
__func__, clockIndex, domainNumber);
return -1;
}
}
od = (oneclock_data_t *)ub_esarray_get_newele(gcd.clds);
memset(od, 0, sizeof(oneclock_data_t));
if(clockIndex!=0){
od->pp=&od->ppe;
}else{
//pp for id=0 must be shared with other processes
od->pp=&gcd.shm->gcpp[domainIndex];
memset(od->pp, 0, sizeof(gptp_clock_ppara_t));
od->pp->gmchange_ind=1; //start with 1
}
od->clockIndex=clockIndex;
od->pp->domainNumber=domainNumber;
od->domainIndex=domainIndex;
gcd.pdd[domainIndex].domainNumber=domainNumber;
memcpy(od->clockId, id, sizeof(ClockIdentity));
od->state = gptp_get_ptpfd(ptpdev, &od->ptpfd);
if(od->state == PTPCLOCK_RDWR || od->state == PTPCLOCK_RDONLY){
snprintf(od->pp->ptpdev, MAX_PTPDEV_NAME, "%s", ptpdev);
}else{
UB_LOG(UBL_ERROR, "%s:clockIndex=%d, ptpdev=%s is not accessible\n",
__func__, clockIndex, ptpdev);
od->ptpfd=PTPFD_INVALID;
gptpclock_del_clock(clockIndex, domainNumber);
return -1;
}
od->ts2diff = avarage_time_setoffset(clockIndex, domainNumber);
od->pp->offset64=0;
od->offset64=0;
UB_LOG(UBL_DEBUG, "%s:clockIndex=%d, ptpdev=%s, domainNumber=%d\n",
__func__, clockIndex, ptpdev, domainNumber);
GH_SET_GPTP_SHM;
return 0;
}
int gptpclock_del_clock(int clockIndex, uint8_t domainNumber)
{
oneclock_data_t *od;
if(!gcd.clds) return 0;
if((od=get_clockod(clockIndex, domainNumber))){
if(PTPFD_VALID(od->ptpfd)) gptp_close_ptpfd(od->ptpfd);
ub_esarray_del_pointer(gcd.clds, (ub_esarray_element_t *)od);
UB_LOG(UBL_DEBUG, "%s:clockIndex=%d, domainNumber=%d\n",
__func__, clockIndex, domainNumber);
return 0;
}
UB_LOG(UBL_ERROR, "%s:doens't exist clockIndex=%d, domainNumber=%d\n",
__func__, clockIndex, domainNumber);
return -1;
}
int gptpclock_init(int max_domains, int max_ports)
{
int max_clocks = max_domains * max_ports;
CB_THREAD_MUTEXATTR_T mattr;
char *shmem_name;
memset(&gcd, 0, sizeof(gptpclock_data_t));
gcd.pdd=malloc(max_domains*sizeof(per_domain_data_t));
ub_assert(gcd.pdd, __func__, "malloc error");
memset(gcd.pdd, 0, max_domains*sizeof(per_domain_data_t));
gcd.active_domain_switch=-1; //default is automatic switch to a stable domain
// clock data has pointer element, thus disallow realloc of container
// set max elements and expansion units with the same values
gcd.clds = ub_esarray_init(max_clocks, sizeof(oneclock_data_t), max_clocks);
gcd.shmsize = sizeof(gptp_clock_ppara_t)*max_domains +
sizeof(gptp_master_clock_shm_head_t);
shmem_name=gptpconf_get_item(CONF_MASTER_CLOCK_SHARED_MEM);
if(!shmem_name[0]) shmem_name=GPTP_MASTER_CLOCK_SHARED_MEM;
gcd.shm=(gptp_master_clock_shm_t *)cb_get_shared_mem(
&gcd.shmfd, shmem_name, gcd.shmsize, O_CREAT | O_RDWR);
if(!gcd.shm) return -1;
memset(gcd.shm, 0, gcd.shmsize);
gcd.shm->head.max_domains = max_domains;
UB_LOG(UBL_DEBUG, "%s:done, max_domains=%d, shmsize=%d\n",
__func__, max_domains, gcd.shmsize);
CB_THREAD_MUTEXATTR_INIT(&mattr);
CB_THREAD_MUTEXATTR_SETPSHARED(&mattr, CB_THREAD_PROCESS_SHARED);
CB_THREAD_MUTEX_INIT(&gcd.shm->head.mcmutex, &mattr);
GH_SET_GPTP_SHM;
return 0;
}
void gptpclock_close(void)
{
oneclock_data_t od;
char *shmem_name;
if(!gcd.clds) return;
gcd.shm->head.max_domains=0;
while(!ub_esarray_pop_ele(gcd.clds, (ub_esarray_element_t *)&od)){
if(od.mode==PTPCLOCK_SLAVE_MAIN){
// return HW adjustment rate to 0
gptp_clock_adjtime(od.ptpfd, 0);
}
if(PTPFD_VALID(od.ptpfd)) gptp_close_ptpfd(od.ptpfd);
}
ub_esarray_close(gcd.clds);
CB_THREAD_MUTEX_DESTROY(&gcd.shm->head.mcmutex);
shmem_name=gptpconf_get_item(CONF_MASTER_CLOCK_SHARED_MEM);
if(!shmem_name[0]) shmem_name=GPTP_MASTER_CLOCK_SHARED_MEM;
cb_close_shared_mem(gcd.shm, &gcd.shmfd, shmem_name, gcd.shmsize, true);
free(gcd.pdd);
GH_SET_GPTP_SHM;
UB_LOG(UBL_DEBUGV, "%s:closed\n", __func__);
}
int gptpclock_apply_offset(int64_t *ts64, int clockIndex, uint8_t domainNumber)
{
oneclock_data_t *od;
GPTPCLOCK_FN_ENTRY(od, clockIndex, domainNumber);
*ts64+=od->offset64;
return 0;
}
int64_t gptpclock_getts64(int clockIndex, uint8_t domainNumber)
{
int64_t ts64=-1;
oneclock_data_t *od;
GPTPCLOCK_FN_ENTRY(od, clockIndex, domainNumber);
gptpclock_getts_od(&ts64, od);
return ts64;
}
int gptpclock_active_domain(void)
{
return gcd.shm->head.active_domain;
}
int64_t gptpclock_gethwts64(int clockIndex, uint8_t domainNumber)
{
oneclock_data_t *od;
int64_t ts64;
GPTPCLOCK_FN_ENTRY(od, clockIndex, domainNumber);
GPTP_CLOCK_GETTIME(od->ptpfd, ts64);
return ts64;
}
int gptpclock_setts64(int64_t ts64, int clockIndex, uint8_t domainNumber)
{
oneclock_data_t *od;
GPTPCLOCK_FN_ENTRY(od, clockIndex, domainNumber);
return gptpclock_setts_od(ts64, od);
}
int gptpclock_setoffset64(int64_t ts64, int clockIndex, uint8_t domainNumber)
{
oneclock_data_t *od;
GPTPCLOCK_FN_ENTRY(od, clockIndex, domainNumber);
if(od->mode != PTPCLOCK_SLAVE_MAIN){
if(!clockIndex) gptpclock_mutex_trylock(&gcd.shm->head.mcmutex);
od->offset64=ts64;
gptpclock_setoffset_od(od);
if(!clockIndex) CB_THREAD_MUTEX_UNLOCK(&gcd.shm->head.mcmutex);
GH_SET_GPTP_SHM;
return 0;
}
ts64 = od->ts2diff/2 + ts64;
if(time_setoffset64(ts64, clockIndex, domainNumber) > od->ts2diff*10){
UB_LOG(UBL_WARN, "%s:clockIndex=%d, domainNumber=%d, "
"can't set in the time. the result must be inaccurate\n",
__func__, clockIndex, domainNumber);
return -1;
}
return 0;
}
int gptpclock_setadj(int adjvppb, int clockIndex, uint8_t domainNumber)
{
oneclock_data_t *od;
oneclock_data_t *od0;
uint32_t save_flags;
int64_t ts;
GPTPCLOCK_FN_ENTRY(od, clockIndex, domainNumber);
if(gcd.pdd[od->domainIndex].thisClockIndex==clockIndex)
gcd.pdd[od->domainIndex].thisClock_adjppb=adjvppb;
switch(od->mode){
case PTPCLOCK_SLAVE_MAIN:
if(gptp_clock_adjtime(od->ptpfd, adjvppb)<0){
UB_LOG(UBL_ERROR, "%s:can't adjust freq, clockIndex=%d, domainNumber=%d\n",
__func__, clockIndex, domainNumber);
return -1;
}
break;
case PTPCLOCK_MASTER:
UB_LOG(UBL_ERROR,"%s:MASTER can't adjust freq.\n",__func__);
return -1;
case PTPCLOCK_SLAVE_SUB:
// to apply new adjrate, update offset value. it updates 'last_setts64'.
save_flags=od->flags;
ts=time_setoffset64(od->ts2diff/2, clockIndex, domainNumber);
if(ts > od->ts2diff*10){
UB_LOG(UBL_WARN, "%s:clockIndex=%d, domainNumber=%d, time_setoffset64 "
"took too long, %"PRIi64"/%d\n",
__func__, clockIndex, domainNumber, ts, od->ts2diff);
}
od->flags=save_flags; // don't update the flag by the above procedure
od->adjrate = (double)adjvppb/1.0E9;
od0=get_clockod(0, domainNumber);
// od0->pp->adjrate is in the shared memory
// it is different from od0->adjrate,
od0->pp->adjrate = od->adjrate;
GH_SET_GPTP_SHM;
break;
}
od->adjvppb=adjvppb;
return 0;
}
// this function is for debug purpose
void gptpclock_print_clkpara(ub_dbgmsg_level_t level)
{
int i;
gptp_clock_ppara_t *pp;
oneclock_data_t *odt;
if(!ub_clog_on(UB_LOGCAT, level)) return;
for(i=0;i<gcd.shm->head.max_domains;i++){
pp=&gcd.shm->gcpp[i];
if((odt=get_clockod(gcd.pdd[i].thisClockIndex, i))==NULL){
UB_LOG(UBL_WARN, "domain=%d thisClockIndex=%d doesn't exists\n",
i,gcd.pdd[i].thisClockIndex);
return;
}
ub_console_print("domain=%d, offset=%"PRIi64"nsec, ",
i, odt->offset64);
switch(odt->mode){
case PTPCLOCK_SLAVE_MAIN:
ub_console_print("hw-adjrate=%dppb\n", odt->adjvppb);
break;
case PTPCLOCK_MASTER:
ub_console_print("adjrate=0(master)\n");
break;
case PTPCLOCK_SLAVE_SUB:
ub_console_print("sw-adjrate=%e\n", pp->adjrate);
break;
}
ub_console_print(" gmsync=%s, last_setts64=%"PRIi64"nsec\n",
pp->gmsync?"true":"false", pp->last_setts64);
}
}
int gptpclock_mode_master(int clockIndex, uint8_t domainNumber)
{
oneclock_data_t *od;
GPTPCLOCK_FN_ENTRY(od, clockIndex, domainNumber);
od->mode=PTPCLOCK_MASTER;
return 0;
}
int gptpclock_mode_slave_main(int clockIndex, uint8_t domainNumber)
{
oneclock_data_t *od, *od1;
int i;
GPTPCLOCK_FN_ENTRY(od, clockIndex, domainNumber);
for(i=0;i<ub_esarray_ele_nums(gcd.clds);i++){
od1 = (oneclock_data_t *)ub_esarray_get_ele(gcd.clds, i);
if(od1->clockIndex != od->clockIndex ||
od1->pp->domainNumber == od->pp->domainNumber)
continue;
if(od1->mode==PTPCLOCK_SLAVE_MAIN){
UB_LOG(UBL_INFO, "%s:domainNumer=%d already in SLAVE_MAIN\n",
__func__, od1->pp->domainNumber);
return -1;
}
}
od->mode=PTPCLOCK_SLAVE_MAIN;
od->adjrate=0.0;
// if SLAVE_MAIN is used, SLAVE_SUB is not used in the same domain.
// When SLAVE_SUB is not used, adjrate in the shared mem. must be 0.0,
// and offset64 is not needed to combine with the one of 'thisClock'
GPTPCLOCK_FN_ENTRY(od, 0, domainNumber);
od->pp->adjrate=0.0;
od->pp->offset64=od->offset64;
GH_SET_GPTP_SHM;
return 0;
}
int gptpclock_mode_slave_sub(int clockIndex, uint8_t domainNumber)
{
oneclock_data_t *od;
GPTPCLOCK_FN_ENTRY(od, clockIndex, domainNumber);
od->mode=PTPCLOCK_SLAVE_SUB;
return 0;
}
static int diff_in_two_clocks(int64_t *tss64,
int clockIndex, uint8_t domainNumber,
int clockIndex1, uint8_t domainNumber1)
{
oneclock_data_t *od, *od1;
int64_t ts1=-1, ts2=-1, ts3=-1;
GPTPCLOCK_FN_ENTRY(od, clockIndex, domainNumber);
GPTPCLOCK_FN_ENTRY(od1, clockIndex1, domainNumber1);
// get (ts2-ts1) - (ts3-ts1)/2
if(gptpclock_getts_od(&ts1, od)){
UB_LOG(UBL_ERROR, "%s:can't get ts1=TS(clk=%d,D=%d)\n",
__func__, od->clockIndex, od->pp->domainNumber);
return -2;
}
if(gptpclock_getts_od(&ts2, od1)){
UB_LOG(UBL_ERROR, "%s:can't get ts2=TS(clk=%d,D=%d)\n",
__func__, od1->clockIndex, od1->pp->domainNumber);
return -2;
}
if(gptpclock_getts_od(&ts3, od)){
UB_LOG(UBL_ERROR, "%s:can't get ts3=TS(clk=%d,D=%d)\n",
__func__, od->clockIndex, od->pp->domainNumber);
return -2;
}
ts3=(ts3-ts1)/2;
if(ts3 > od->ts2diff*10) return -1;
*tss64=ts2-ts1-ts3;
return 0;
}
int gptpclock_tsconv(int64_t *ts64, int clockIndex, uint8_t domainNumber,
int clockIndex1, uint8_t domainNumber1)
{
int64_t dtss;
oneclock_data_t *od;
if(clockIndex==clockIndex1 && domainNumber==domainNumber1) return 0;
if((od=get_clockod(clockIndex1, domainNumber1))==NULL) return -1;
if(clockIndex==clockIndex1 && od->mode!=PTPCLOCK_SLAVE_SUB) return 0;
if(diff_in_two_clocks(&dtss, clockIndex, domainNumber,
clockIndex1, domainNumber1)){
// in case of a fail by context switching, we'll try twice
if(diff_in_two_clocks(&dtss, clockIndex, domainNumber,
clockIndex1, domainNumber1)){
UB_LOG(UBL_ERROR, "%s:can't convert ts, (ci=%d,di=%d)->(ci=%d,di=%d)\n",
__func__, clockIndex, domainNumber, clockIndex1, domainNumber1);
return -1;
}
}
//UB_LOG(UBL_DEBUGV, "%s:(cI/dN) %d/%d -> %d/%d dtss=%"PRIi64"\n",__func__,
// clockIndex, domainNumber, clockIndex1, domainNumber1, dtss);
*ts64+=dtss;
return 0;
}
uint8_t *gptpclock_clockid(int clockIndex, uint8_t domainNumber)
{
oneclock_data_t *od;
if(!gcd.clds) return NULL;
if((od=get_clockod(clockIndex, domainNumber))==NULL) return NULL;
return od->clockId;
}
int gptpclock_rate_same(int clockIndex, uint8_t domainNumber,
int clockIndex1, uint8_t domainNumber1)
{
oneclock_data_t *od, *od1;
if(!gcd.clds) return -1;
if((od=get_clockod(clockIndex, domainNumber))==NULL) return -1;
if((od1=get_clockod(clockIndex1, domainNumber1))==NULL) return -1;
if(!strcmp(od->pp->ptpdev, od1->pp->ptpdev)){
if(od->mode != PTPCLOCK_SLAVE_SUB && od1->mode != PTPCLOCK_SLAVE_SUB)
return 0;
if(od->adjrate == 0.0 && od1->adjrate == 0.0)
return 0;
if(od->adjrate == 0.0 && od1->mode != PTPCLOCK_SLAVE_SUB)
return 0;
if(od1->adjrate == 0.0 && od->mode != PTPCLOCK_SLAVE_SUB)
return 0;
}
return 1;
}
static int switch_active_domain(int di)
{
oneclock_data_t *od;
if(gcd.shm->head.active_domain==di) return 1;
UB_TLOG(UBL_INFO, "active domain switched from %d to %d\n",
gcd.shm->head.active_domain, di);
gcd.shm->head.active_domain=di;
GPTPCLOCK_FN_ENTRY(od, 0, gcd.pdd[di].domainNumber);
od->flags |= GPTPIPC_EVENT_CLOCK_FLAG_ACTIVE_DOMAIN;
GH_SET_GPTP_SHM;
return 0;
}
static int gptpclock_update_active_domain(void)
{
int i;
UB_LOG(UBL_DEBUGV, "%s:current active domain=%d\n",__func__,gcd.shm->head.active_domain);
if(gcd.active_domain_switch>=0){
return switch_active_domain(gcd.active_domain_switch);
}
if(gptpconf_get_intitem(CONF_ACTIVE_DOMAIN_AUTO_SWITCH)==0) return 0;
if(gcd.pdd[gcd.shm->head.active_domain].gm_stable &&
gptpconf_get_intitem(CONF_ACTIVE_DOMAIN_AUTO_SWITCH)==1){
UB_LOG(UBL_DEBUG, "%s:current active domain=%d is stable, don't switch\n",
__func__,gcd.shm->head.active_domain);
return 0;
}
if(gcd.pdd[0].gm_stable){
return switch_active_domain(0);
}
for(i=0;i<gcd.shm->head.max_domains;i++){
if(gcd.pdd[i].gm_stable){
return switch_active_domain(i);
}
}
UB_LOG(UBL_DEBUG, "%s:no stable GM in all domains, current active domain=%d\n",
__func__,gcd.shm->head.active_domain);
return -1;
}
static int adjust_GM_btw_domains(int domainNumber)
{
UB_TLOG(UBL_INFO, "%s:domainNumber=%d\n",__func__, domainNumber);
oneclock_data_t *od, *od1;
// this is called after gm_stable of D0 becomes true
GPTPCLOCK_FN_ENTRY(od, 0, 0);
GPTPCLOCK_FN_ENTRY(od1, 0, domainNumber);
if(gcd.pdd[0].thisClockIndex != gcd.pdd[od1->domainIndex].thisClockIndex){
int64_t ts64=-1;
gptpclock_getts_od(&ts64, od);
gptpclock_setts_od(ts64, od1);
return 0;
}
// 'thisClock of D0' and 'thisClock of Di' is based on the same clock.
od1->adjrate=0.0; // GM Freq. sync to Domain0
od1->pp->adjrate=0.0;
od1->offset64=od->offset64;
od1->pp->offset64=od->pp->offset64;
GH_SET_GPTP_SHM;
return 0;
}
int gptpclock_active_domain_switch(int domainIndex)
{
//domainIndex=-1:auto, domainIndex>=0:fix to the domain
gcd.active_domain_switch=domainIndex;
if(domainIndex<0 || domainIndex>=gcd.shm->head.max_domains) return 0;
return switch_active_domain(gcd.active_domain_switch);
}
int gptpclock_active_domain_status(void)
{
return gcd.shm->head.active_domain;
}
int gptpclock_set_gmsync(int clockIndex, uint8_t domainNumber, ClockIdentity gmIdentity, bool becomeGM)
{
oneclock_data_t *od;
UB_LOG(UBL_DEBUGV, "%s:clockIndex=%d, domainNumber=%d, becomeGM=%d\n",
__func__, clockIndex, domainNumber, becomeGM);
GPTPCLOCK_FN_ENTRY(od, clockIndex, domainNumber);
if(od->pp->gmsync) return 0;
if(becomeGM){
gcd.pdd[od->domainIndex].we_are_gm=true;
memcpy(gcd.pdd[od->domainIndex].gmClockId, gmIdentity, sizeof(ClockIdentity));
}
else
gcd.pdd[od->domainIndex].we_are_gm=false;
od->flags |= GPTPIPC_EVENT_CLOCK_FLAG_GM_SYNCED;
od->pp->gmsync=true;
if(clockIndex==0 && domainNumber!=0 && becomeGM)
adjust_GM_btw_domains(domainNumber);
if(clockIndex==0 && becomeGM && gptpconf_get_intitem(CONF_RESET_FREQADJ_BECOMEGM))
gptpclock_setadj(0, gcd.pdd[od->domainIndex].thisClockIndex, domainNumber);
GH_SET_GPTP_SHM;
return 0;
}
bool gptpclock_we_are_gm(int domainIndex)
{
return gcd.pdd[domainIndex].we_are_gm;
}
int gptpclock_reset_gmsync(int clockIndex, uint8_t domainNumber)
{
oneclock_data_t *od;
UB_LOG(UBL_DEBUGV, "%s:clockIndex=%d, domainNumber=%d\n",
__func__, clockIndex, domainNumber);
GPTPCLOCK_FN_ENTRY(od, clockIndex, domainNumber);
if(!od->pp->gmsync) return 0;
od->flags |= GPTPIPC_EVENT_CLOCK_FLAG_GM_UNSYNCED;
od->pp->gmsync=false;
return 0;
}
int gptpclock_get_gmsync(int clockIndex, uint8_t domainNumber)
{
oneclock_data_t *od;
GPTPCLOCK_FN_ENTRY(od, clockIndex, domainNumber);
if(od->pp->gmsync) return 1;
return 0;
}
void gptpclock_set_gmstable(int domainIndex, bool stable)
{
if(domainIndex<0 || domainIndex>=gcd.shm->head.max_domains) return;
if(gcd.pdd[domainIndex].gm_stable==stable) return;
gcd.pdd[domainIndex].gm_stable=stable;
gptpclock_update_active_domain();
}
bool gptpclock_get_gmstable(int domainIndex)
{
return gcd.pdd[domainIndex].gm_stable;
}
int gptpclock_set_gmchange(int domainNumber, ClockIdentity clockIdentity)
{
oneclock_data_t *od;
UB_LOG(UBL_DEBUGV, "%s:domainNumber=%d\n", __func__, domainNumber);
GPTPCLOCK_FN_ENTRY(od, 0, domainNumber);
od->flags |= GPTPIPC_EVENT_CLOCK_FLAG_GM_CHANGE;
od->pp->gmchange_ind++;
memcpy(gcd.pdd[od->domainIndex].gmClockId, clockIdentity, sizeof(ClockIdentity));
GH_SET_GPTP_SHM;
return 0;
}
int gptpclock_get_gmchange_ind(int domainNumber)
{
oneclock_data_t *od;
GPTPCLOCK_FN_ENTRY(od, 0, domainNumber);
return od->pp->gmchange_ind;
}
uint32_t gptpclock_get_event_flags(int clockIndex, uint8_t domainNumber)
{
oneclock_data_t *od;
uint32_t flags;
if(!gcd.clds) return 0;
if((od=get_clockod(clockIndex, domainNumber))==NULL) return 0;
flags=od->flags;
od->flags=0;
return flags;
}
int gptpclock_get_ipc_clock_data(int clockIndex, uint8_t domainNumber, gptpipc_clock_data_t *cd)
{
oneclock_data_t *od;
GPTPCLOCK_FN_ENTRY(od, clockIndex, domainNumber);
cd->gmsync = od->pp->gmsync;
cd->domainNumber = od->pp->domainNumber;
memcpy(cd->clockId, od->clockId, sizeof(ClockIdentity));
cd->domainActive = (gcd.shm->head.active_domain==od->domainIndex);
memcpy(cd->gmClockId, gcd.pdd[od->domainIndex].gmClockId, sizeof(ClockIdentity));
return 0;
}
int gptpclock_set_thisClock(int clockIndex, uint8_t domainNumber, bool set_clock_para)
{
oneclock_data_t *od, *mod;
double adjrate;
int64_t ts64;
if(clockIndex==0){
UB_LOG(UBL_ERROR,"%s:clockIndex=0 can't be thisClock\n", __func__);
return -1;
}
if(!gcd.clds) return -1;
if((od=get_clockod(clockIndex, domainNumber))==NULL) return -1;
if((mod=get_clockod(0, domainNumber))==NULL) return -1;
if(strcmp(od->pp->ptpdev, mod->pp->ptpdev)){
UB_LOG(UBL_ERROR,
"%s:master clock and thisClock must be based on the same ptp clock\n",
__func__);
return -1;
}
gcd.pdd[od->domainIndex].thisClockIndex=clockIndex;
// make sure the master clock(clockIndex=0) is PTPCLOCK_MASTER
mod->mode=PTPCLOCK_MASTER;
/* During the offset and adjrate are moved into thisClock from the master clock,
the master clock can't be read. So it must be locked by mutex.
clockIndex is never '0' in this section, and gcd.shm->head.mcmutex is
locked only when clockIndex==0 in other parts.
Make sure to keep the condition not to have deadlock.
*/
gptpclock_mutex_trylock(&gcd.shm->head.mcmutex);
adjrate=od->adjrate;
if((od->state == PTPCLOCK_RDWR) && !gptpclock_mode_slave_main(clockIndex, domainNumber)){
//PTPCLOCK_SLAVE_MAIN
if(!set_clock_para) goto mutexout;
/* when thisClock was SLAVE_SUB before, it may have SW offset and adjrate
move them to HW offset and adjrate */
if(od->offset64){
gptpclock_setoffset64(od->offset64, clockIndex, domainNumber);
}
if(adjrate){
gptpclock_setadj(adjrate*UB_SEC_NS, clockIndex, domainNumber);
}
/* move the offset in the master clock to thisClock */
gptpclock_setoffset64(mod->offset64, clockIndex, domainNumber);
UB_LOG(UBL_INFO, "%s:thisClock is clockIndex=%d, SLAVE_MAIN\n",
__func__, clockIndex);
}else{
//PTPCLOCK_SLAVE_SUB
gptpclock_mode_slave_sub(clockIndex, domainNumber);
if(!set_clock_para) goto mutexout;
ts64 = od->offset64 + mod->offset64;
od->offset64=ts64;
UB_LOG(UBL_INFO, "%s:thisClock is clockIndex=%d, SLAVE_SUB\n",
__func__, clockIndex);
}
/* when set_clock_para==true, offset in the master clock has been moved to thisClock,
and it needs to be cleared */
mod->offset64=0;
mod->pp->offset64=mod->offset64+od->offset64;
mutexout:
CB_THREAD_MUTEX_UNLOCK(&gcd.shm->head.mcmutex);
GH_SET_GPTP_SHM;
return 0;
}
int64_t gptpclock_d0ClockfromRT(int clockIndex)