-
Notifications
You must be signed in to change notification settings - Fork 1
/
matlab_cp2tform.py
586 lines (532 loc) · 15.1 KB
/
matlab_cp2tform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 11 06:54:28 2017
@author: zhaoyafei
"""
import numpy as np
from numpy.linalg import inv, norm, lstsq
from numpy.linalg import matrix_rank as rank
"""
Introduction:
----------
numpy implemetation form matlab function CP2TFORM(...)
with 'transformtype':
1) 'nonreflective similarity'
2) 'similarity'
MATLAB code:
----------
%--------------------------------------
% Function findNonreflectiveSimilarity
%
function [trans, output] = findNonreflectiveSimilarity(uv,xy,options)
%
% For a nonreflective similarity:
%
% let sc = s*cos(theta)
% let ss = s*sin(theta)
%
% [ sc -ss
% [u v] = [x y 1] * ss sc
% tx ty]
%
% There are 4 unknowns: sc,ss,tx,ty.
%
% Another way to write this is:
%
% u = [x y 1 0] * [sc
% ss
% tx
% ty]
%
% v = [y -x 0 1] * [sc
% ss
% tx
% ty]
%
% With 2 or more correspondence points we can combine the u equations and
% the v equations for one linear system to solve for sc,ss,tx,ty.
%
% [ u1 ] = [ x1 y1 1 0 ] * [sc]
% [ u2 ] [ x2 y2 1 0 ] [ss]
% [ ... ] [ ... ] [tx]
% [ un ] [ xn yn 1 0 ] [ty]
% [ v1 ] [ y1 -x1 0 1 ]
% [ v2 ] [ y2 -x2 0 1 ]
% [ ... ] [ ... ]
% [ vn ] [ yn -xn 0 1 ]
%
% Or rewriting the above matrix equation:
% U = X * r, where r = [sc ss tx ty]'
% so r = X/U.
%
K = options.K;
M = size(xy,1);
x = xy(:,1);
y = xy(:,2);
X = [x y ones(M,1) zeros(M,1);
y -x zeros(M,1) ones(M,1) ];
u = uv(:,1);
v = uv(:,2);
U = [u; v];
% We know that X * r = U
if rank(X) >= 2*K
r = X / U;
else
error(message('images:cp2tform:twoUniquePointsReq'))
end
sc = r(1);
ss = r(2);
tx = r(3);
ty = r(4);
Tinv = [sc -ss 0;
ss sc 0;
tx ty 1];
T = inv(Tinv);
T(:,3) = [0 0 1]';
trans = maketform('affine', T);
output = [];
%-------------------------
% Function findSimilarity
%
function [trans, output] = findSimilarity(uv,xy,options)
%
% The similarities are a superset of the nonreflective similarities as they may
% also include reflection.
%
% let sc = s*cos(theta)
% let ss = s*sin(theta)
%
% [ sc -ss
% [u v] = [x y 1] * ss sc
% tx ty]
%
% OR
%
% [ sc ss
% [u v] = [x y 1] * ss -sc
% tx ty]
%
% Algorithm:
% 1) Solve for trans1, a nonreflective similarity.
% 2) Reflect the xy data across the Y-axis,
% and solve for trans2r, also a nonreflective similarity.
% 3) Transform trans2r to trans2, undoing the reflection done in step 2.
% 4) Use TFORMFWD to transform uv using both trans1 and trans2,
% and compare the results, Returnsing the transformation corresponding
% to the smaller L2 norm.
% Need to reset options.K to prepare for calls to findNonreflectiveSimilarity.
% This is safe because we already checked that there are enough point pairs.
options.K = 2;
% Solve for trans1
[trans1, output] = findNonreflectiveSimilarity(uv,xy,options);
% Solve for trans2
% manually reflect the xy data across the Y-axis
xyR = xy;
xyR(:,1) = -1*xyR(:,1);
trans2r = findNonreflectiveSimilarity(uv,xyR,options);
% manually reflect the tform to undo the reflection done on xyR
TreflectY = [-1 0 0;
0 1 0;
0 0 1];
trans2 = maketform('affine', trans2r.tdata.T * TreflectY);
% Figure out if trans1 or trans2 is better
xy1 = tformfwd(trans1,uv);
norm1 = norm(xy1-xy);
xy2 = tformfwd(trans2,uv);
norm2 = norm(xy2-xy);
if norm1 <= norm2
trans = trans1;
else
trans = trans2;
end
"""
class MatlabCp2tormException(Exception):
def __str__(self):
return 'In File {}:{}'.format(
__file__, super.__str__(self))
def tformfwd(trans, uv):
"""
Function:
----------
apply affine transform 'trans' to uv
Parameters:
----------
@trans: 3x3 np.array
transform matrix
@uv: Kx2 np.array
each row is a pair of coordinates (x, y)
Returns:
----------
@xy: Kx2 np.array
each row is a pair of transformed coordinates (x, y)
"""
uv = np.hstack((
uv, np.ones((uv.shape[0], 1))
))
xy = np.dot(uv, trans)
xy = xy[:, 0:-1]
return xy
def tforminv(trans, uv):
"""
Function:
----------
apply the inverse of affine transform 'trans' to uv
Parameters:
----------
@trans: 3x3 np.array
transform matrix
@uv: Kx2 np.array
each row is a pair of coordinates (x, y)
Returns:
----------
@xy: Kx2 np.array
each row is a pair of inverse-transformed coordinates (x, y)
"""
Tinv = inv(trans)
xy = tformfwd(Tinv, uv)
return xy
def findNonreflectiveSimilarity(uv, xy, options=None):
"""
Function:
----------
Find Non-reflective Similarity Transform Matrix 'trans':
u = uv[:, 0]
v = uv[:, 1]
x = xy[:, 0]
y = xy[:, 1]
[x, y, 1] = [u, v, 1] * trans
Parameters:
----------
@uv: Kx2 np.array
source points each row is a pair of coordinates (x, y)
@xy: Kx2 np.array
each row is a pair of inverse-transformed
@option: not used, keep it as None
Returns:
@trans: 3x3 np.array
transform matrix from uv to xy
@trans_inv: 3x3 np.array
inverse of trans, transform matrix from xy to uv
Matlab:
----------
% For a nonreflective similarity:
%
% let sc = s*cos(theta)
% let ss = s*sin(theta)
%
% [ sc -ss
% [u v] = [x y 1] * ss sc
% tx ty]
%
% There are 4 unknowns: sc,ss,tx,ty.
%
% Another way to write this is:
%
% u = [x y 1 0] * [sc
% ss
% tx
% ty]
%
% v = [y -x 0 1] * [sc
% ss
% tx
% ty]
%
% With 2 or more correspondence points we can combine the u equations and
% the v equations for one linear system to solve for sc,ss,tx,ty.
%
% [ u1 ] = [ x1 y1 1 0 ] * [sc]
% [ u2 ] [ x2 y2 1 0 ] [ss]
% [ ... ] [ ... ] [tx]
% [ un ] [ xn yn 1 0 ] [ty]
% [ v1 ] [ y1 -x1 0 1 ]
% [ v2 ] [ y2 -x2 0 1 ]
% [ ... ] [ ... ]
% [ vn ] [ yn -xn 0 1 ]
%
% Or rewriting the above matrix equation:
% U = X * r, where r = [sc ss tx ty]'
% so r = X/U.
%
"""
options = {'K': 2}
K = options['K']
M = xy.shape[0]
x = xy[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
y = xy[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
# print('--->x, y:\n', x, y)
tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1))))
tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1))))
X = np.vstack((tmp1, tmp2))
# print('--->X.shape: ', X.shape)
# print('X:\n', X)
u = uv[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
v = uv[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
U = np.vstack((u, v))
# print('--->U.shape: ', U.shape)
# print('U:\n', U)
# We know that X * r = U
if rank(X) >= 2 * K:
r, _, _, _ = lstsq(X, U)
r = np.squeeze(r)
else:
raise Exception('cp2tform:twoUniquePointsReq')
# print('--->r:\n', r)
sc = r[0]
ss = r[1]
tx = r[2]
ty = r[3]
Tinv = np.array([
[sc, -ss, 0],
[ss, sc, 0],
[tx, ty, 1]
])
# print('--->Tinv:\n', Tinv)
T = inv(Tinv)
# print('--->T:\n', T)
T[:, 2] = np.array([0, 0, 1])
return T, Tinv
def findSimilarity(uv, xy, options=None):
"""
Function:
----------
Find Reflective Similarity Transform Matrix 'trans':
u = uv[:, 0]
v = uv[:, 1]
x = xy[:, 0]
y = xy[:, 1]
[x, y, 1] = [u, v, 1] * trans
Parameters:
----------
@uv: Kx2 np.array
source points each row is a pair of coordinates (x, y)
@xy: Kx2 np.array
each row is a pair of inverse-transformed
@option: not used, keep it as None
Returns:
----------
@trans: 3x3 np.array
transform matrix from uv to xy
@trans_inv: 3x3 np.array
inverse of trans, transform matrix from xy to uv
Matlab:
----------
% The similarities are a superset of the nonreflective similarities as they may
% also include reflection.
%
% let sc = s*cos(theta)
% let ss = s*sin(theta)
%
% [ sc -ss
% [u v] = [x y 1] * ss sc
% tx ty]
%
% OR
%
% [ sc ss
% [u v] = [x y 1] * ss -sc
% tx ty]
%
% Algorithm:
% 1) Solve for trans1, a nonreflective similarity.
% 2) Reflect the xy data across the Y-axis,
% and solve for trans2r, also a nonreflective similarity.
% 3) Transform trans2r to trans2, undoing the reflection done in step 2.
% 4) Use TFORMFWD to transform uv using both trans1 and trans2,
% and compare the results, Returnsing the transformation corresponding
% to the smaller L2 norm.
% Need to reset options.K to prepare for calls to findNonreflectiveSimilarity.
% This is safe because we already checked that there are enough point pairs.
"""
options = {'K': 2}
# uv = np.array(uv)
# xy = np.array(xy)
# Solve for trans1
trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options)
# Solve for trans2
# manually reflect the xy data across the Y-axis
xyR = xy
xyR[:, 0] = -1 * xyR[:, 0]
trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options)
# manually reflect the tform to undo the reflection done on xyR
TreflectY = np.array([
[-1, 0, 0],
[0, 1, 0],
[0, 0, 1]
])
trans2 = np.dot(trans2r, TreflectY)
# Figure out if trans1 or trans2 is better
xy1 = tformfwd(trans1, uv)
norm1 = norm(xy1 - xy)
xy2 = tformfwd(trans2, uv)
norm2 = norm(xy2 - xy)
if norm1 <= norm2:
return trans1, trans1_inv
else:
trans2_inv = inv(trans2)
return trans2, trans2_inv
def get_similarity_transform(src_pts, dst_pts, reflective=True):
"""
Function:
----------
Find Similarity Transform Matrix 'trans':
u = src_pts[:, 0]
v = src_pts[:, 1]
x = dst_pts[:, 0]
y = dst_pts[:, 1]
[x, y, 1] = [u, v, 1] * trans
Parameters:
----------
@src_pts: Kx2 np.array
source points, each row is a pair of coordinates (x, y)
@dst_pts: Kx2 np.array
destination points, each row is a pair of transformed
coordinates (x, y)
@reflective: True or False
if True:
use reflective similarity transform
else:
use non-reflective similarity transform
Returns:
----------
@trans: 3x3 np.array
transform matrix from uv to xy
trans_inv: 3x3 np.array
inverse of trans, transform matrix from xy to uv
"""
if reflective:
trans, trans_inv = findSimilarity(src_pts, dst_pts)
else:
trans, trans_inv = findNonreflectiveSimilarity(src_pts, dst_pts)
return trans, trans_inv
def cvt_tform_mat_for_cv2(trans):
"""
Function:
----------
Convert Transform Matrix 'trans' into 'cv2_trans' which could be
directly used by cv2.warpAffine():
u = src_pts[:, 0]
v = src_pts[:, 1]
x = dst_pts[:, 0]
y = dst_pts[:, 1]
[x, y].T = cv_trans * [u, v, 1].T
Parameters:
----------
@trans: 3x3 np.array
transform matrix from uv to xy
Returns:
----------
@cv2_trans: 2x3 np.array
transform matrix from src_pts to dst_pts, could be directly used
for cv2.warpAffine()
"""
cv2_trans = trans[:, 0:2].T
return cv2_trans
def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True):
"""
Function:
----------
Find Similarity Transform Matrix 'cv2_trans' which could be
directly used by cv2.warpAffine():
u = src_pts[:, 0]
v = src_pts[:, 1]
x = dst_pts[:, 0]
y = dst_pts[:, 1]
[x, y].T = cv_trans * [u, v, 1].T
Parameters:
----------
@src_pts: Kx2 np.array
source points, each row is a pair of coordinates (x, y)
@dst_pts: Kx2 np.array
destination points, each row is a pair of transformed
coordinates (x, y)
reflective: True or False
if True:
use reflective similarity transform
else:
use non-reflective similarity transform
Returns:
----------
@cv2_trans: 2x3 np.array
transform matrix from src_pts to dst_pts, could be directly used
for cv2.warpAffine()
"""
trans, trans_inv = get_similarity_transform(src_pts, dst_pts, reflective)
cv2_trans = cvt_tform_mat_for_cv2(trans)
return cv2_trans
if __name__ == '__main__':
"""
u = [0, 6, -2]
v = [0, 3, 5]
x = [-1, 0, 4]
y = [-1, -10, 4]
# In Matlab, run:
#
# uv = [u'; v'];
# xy = [x'; y'];
# tform_sim=cp2tform(uv,xy,'similarity');
#
# trans = tform_sim.tdata.T
# ans =
# -0.0764 -1.6190 0
# 1.6190 -0.0764 0
# -3.2156 0.0290 1.0000
# trans_inv = tform_sim.tdata.Tinv
# ans =
#
# -0.0291 0.6163 0
# -0.6163 -0.0291 0
# -0.0756 1.9826 1.0000
# xy_m=tformfwd(tform_sim, u,v)
#
# xy_m =
#
# -3.2156 0.0290
# 1.1833 -9.9143
# 5.0323 2.8853
# uv_m=tforminv(tform_sim, x,y)
#
# uv_m =
#
# 0.5698 1.3953
# 6.0872 2.2733
# -2.6570 4.3314
"""
u = [0, 6, -2]
v = [0, 3, 5]
x = [-1, 0, 4]
y = [-1, -10, 4]
uv = np.array((u, v)).T
xy = np.array((x, y)).T
print('\n--->uv:')
print(uv)
print('\n--->xy:')
print(xy)
trans, trans_inv = get_similarity_transform(uv, xy)
print('\n--->trans matrix:')
print(trans)
print('\n--->trans_inv matrix:')
print(trans_inv)
print('\n---> apply transform to uv')
print('\nxy_m = uv_augmented * trans')
uv_aug = np.hstack((
uv, np.ones((uv.shape[0], 1))
))
xy_m = np.dot(uv_aug, trans)
print(xy_m)
print('\nxy_m = tformfwd(trans, uv)')
xy_m = tformfwd(trans, uv)
print(xy_m)
print('\n---> apply inverse transform to xy')
print('\nuv_m = xy_augmented * trans_inv')
xy_aug = np.hstack((
xy, np.ones((xy.shape[0], 1))
))
uv_m = np.dot(xy_aug, trans_inv)
print(uv_m)
print('\nuv_m = tformfwd(trans_inv, xy)')
uv_m = tformfwd(trans_inv, xy)
print(uv_m)
uv_m = tforminv(trans, xy)
print('\nuv_m = tforminv(trans, xy)')
print(uv_m)