forked from eriklindernoren/PyTorch-GAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
stargan.py
261 lines (215 loc) · 11.1 KB
/
stargan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
"""
StarGAN (CelebA)
The dataset can be downloaded from: https://www.dropbox.com/sh/8oqt9vytwxb3s4r/AADIKlz8PR9zr6Y20qbkunrba/Img/img_align_celeba.zip?dl=0
And the annotations: https://www.dropbox.com/sh/8oqt9vytwxb3s4r/AAA8YmAHNNU6BEfWMPMfM6r9a/Anno?dl=0&preview=list_attr_celeba.txt
Instructions on running the script:
1. Download the dataset and annotations from the provided link
2. Copy 'list_attr_celeba.txt' to folder 'img_align_celeba'
2. Save the folder 'img_align_celeba' to '../../data/'
4. Run the script by 'python3 stargan.py'
"""
import argparse
import os
import numpy as np
import math
import itertools
import time
import datetime
import sys
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import torch.autograd as autograd
from models import *
from datasets import *
import torch.nn as nn
import torch.nn.functional as F
import torch
os.makedirs('images', exist_ok=True)
os.makedirs('saved_models', exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument('--epoch', type=int, default=0, help='epoch to start training from')
parser.add_argument('--n_epochs', type=int, default=200, help='number of epochs of training')
parser.add_argument('--dataset_name', type=str, default="img_align_celeba", help='name of the dataset')
parser.add_argument('--batch_size', type=int, default=16, help='size of the batches')
parser.add_argument('--lr', type=float, default=0.0002, help='adam: learning rate')
parser.add_argument('--b1', type=float, default=0.5, help='adam: decay of first order momentum of gradient')
parser.add_argument('--b2', type=float, default=0.999, help='adam: decay of first order momentum of gradient')
parser.add_argument('--decay_epoch', type=int, default=100, help='epoch from which to start lr decay')
parser.add_argument('--n_cpu', type=int, default=8, help='number of cpu threads to use during batch generation')
parser.add_argument('--img_height', type=int, default=128, help='size of image height')
parser.add_argument('--img_width', type=int, default=128, help='size of image width')
parser.add_argument('--channels', type=int, default=3, help='number of image channels')
parser.add_argument('--sample_interval', type=int, default=400, help='interval between sampling of images from generators')
parser.add_argument('--checkpoint_interval', type=int, default=-1, help='interval between model checkpoints')
parser.add_argument('--residual_blocks', type=int, default=6, help='number of residual blocks in generator')
parser.add_argument('--selected_attrs', '--list', nargs='+', help='selected attributes for the CelebA dataset',
default=['Black_Hair', 'Blond_Hair', 'Brown_Hair', 'Male', 'Young'])
parser.add_argument('--n_critic', type=int, default=5, help='number of training iterations for WGAN discriminator')
opt = parser.parse_args()
print(opt)
c_dim = len(opt.selected_attrs)
img_shape = (opt.channels, opt.img_height, opt.img_width)
cuda = True if torch.cuda.is_available() else False
# Loss functions
criterion_cycle = torch.nn.L1Loss()
def criterion_cls(logit, target):
return F.binary_cross_entropy_with_logits(logit, target, size_average=False) / logit.size(0)
# Loss weights
lambda_cls = 1
lambda_rec = 10
lambda_gp = 10
# Initialize generator and discriminator
generator = GeneratorResNet(img_shape=img_shape, res_blocks=opt.residual_blocks, c_dim=c_dim)
discriminator = Discriminator(img_shape=img_shape, c_dim=c_dim)
if cuda:
generator = generator.cuda()
discriminator = discriminator.cuda()
criterion_cycle.cuda()
if opt.epoch != 0:
# Load pretrained models
generator.load_state_dict(torch.load('saved_models/generator_%d.pth' % opt.epoch))
discriminator.load_state_dict(torch.load('saved_models/discriminator_%d.pth' % opt.epoch))
else:
generator.apply(weights_init_normal)
discriminator.apply(weights_init_normal)
# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
# Configure dataloaders
train_transforms = [transforms.Resize(int(1.12*opt.img_height), Image.BICUBIC),
transforms.RandomCrop(opt.img_height),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)) ]
dataloader = DataLoader(CelebADataset("../../data/%s" % opt.dataset_name, transforms_=train_transforms, mode='train', attributes=opt.selected_attrs),
batch_size=opt.batch_size, shuffle=True, num_workers=opt.n_cpu)
val_transforms = [ transforms.Resize((opt.img_height, opt.img_width), Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)) ]
val_dataloader = DataLoader(CelebADataset("../../data/%s" % opt.dataset_name, transforms_=val_transforms, mode='val', attributes=opt.selected_attrs),
batch_size=10, shuffle=True, num_workers=1)
# Tensor type
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
def compute_gradient_penalty(D, real_samples, fake_samples):
"""Calculates the gradient penalty loss for WGAN GP"""
# Random weight term for interpolation between real and fake samples
alpha = Tensor(np.random.random((real_samples.size(0), 1, 1, 1)))
# Get random interpolation between real and fake samples
interpolates = (alpha * real_samples + ((1 - alpha) * fake_samples)).requires_grad_(True)
d_interpolates, _ = D(interpolates)
fake = Variable(Tensor(np.ones(d_interpolates.shape)), requires_grad=False)
# Get gradient w.r.t. interpolates
gradients = autograd.grad(outputs=d_interpolates, inputs=interpolates,
grad_outputs=fake, create_graph=True, retain_graph=True,
only_inputs=True)[0]
gradients = gradients.view(gradients.size(0), -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
return gradient_penalty
label_changes = [
((0, 1), (1, 0), (2, 0)), # Set to black hair
((0, 0), (1, 1), (2, 0)), # Set to blonde hair
((0, 0), (1, 0), (2, 1)), # Set to brown hair
((3, -1),), # Flip gender
((4, -1),) # Age flip
]
def sample_images(batches_done):
"""Saves a generated sample of domain translations"""
val_imgs, val_labels = next(iter(val_dataloader))
val_imgs = Variable(val_imgs.type(Tensor))
val_labels = Variable(val_labels.type(Tensor))
img_samples = None
for i in range(10):
img, label = val_imgs[i], val_labels[i]
# Repeat for number of label changes
imgs = img.repeat(c_dim, 1, 1, 1)
labels = label.repeat(c_dim, 1)
# Make changes to labels
for sample_i, changes in enumerate(label_changes):
for col, val in changes:
labels[sample_i, col] = 1 - labels[sample_i, col] if val == -1 else val
# Generate translations
gen_imgs = generator(imgs, labels)
# Concatenate images by width
gen_imgs = torch.cat([x for x in gen_imgs.data], -1)
img_sample = torch.cat((img.data, gen_imgs), -1)
# Add as row to generated samples
img_samples = img_sample if img_samples is None else torch.cat((img_samples, img_sample), -2)
save_image(img_samples.view(1, *img_samples.shape), 'images/%s.png' % batches_done, normalize=True)
# ----------
# Training
# ----------
saved_samples = []
start_time = time.time()
for epoch in range(opt.epoch, opt.n_epochs):
for i, (imgs, labels) in enumerate(dataloader):
# Model inputs
imgs = Variable(imgs.type(Tensor))
labels = Variable(labels.type(Tensor))
# Sample labels as generator inputs
sampled_c = Variable(Tensor(np.random.randint(0, 2, (imgs.size(0), c_dim))))
# Generate fake batch of images
fake_imgs = generator(imgs, sampled_c)
# ---------------------
# Train Discriminator
# ---------------------
optimizer_D.zero_grad()
# Real images
real_validity, pred_cls = discriminator(imgs)
# Fake images
fake_validity, _ = discriminator(fake_imgs.detach())
# Gradient penalty
gradient_penalty = compute_gradient_penalty(discriminator, imgs.data, fake_imgs.data)
# Adversarial loss
loss_D_adv = - torch.mean(real_validity) + torch.mean(fake_validity) + lambda_gp * gradient_penalty
# Classification loss
loss_D_cls = criterion_cls(pred_cls, labels)
# Total loss
loss_D = loss_D_adv + lambda_cls * loss_D_cls
loss_D.backward()
optimizer_D.step()
optimizer_G.zero_grad()
# Every n_critic times update generator
if i % opt.n_critic == 0:
# -----------------
# Train Generator
# -----------------
# Translate and reconstruct image
gen_imgs = generator(imgs, sampled_c)
recov_imgs = generator(gen_imgs, labels)
# Discriminator evaluates translated image
fake_validity, pred_cls = discriminator(gen_imgs)
# Adversarial loss
loss_G_adv = -torch.mean(fake_validity)
# Classification loss
loss_G_cls = criterion_cls(pred_cls, sampled_c)
# Reconstruction loss
loss_G_rec = criterion_cycle(recov_imgs, imgs)
# Total loss
loss_G = loss_G_adv + lambda_cls * loss_G_cls + lambda_rec * loss_G_rec
loss_G.backward()
optimizer_G.step()
# --------------
# Log Progress
# --------------
# Determine approximate time left
batches_done = epoch * len(dataloader) + i
batches_left = opt.n_epochs * len(dataloader) - batches_done
time_left = datetime.timedelta(seconds=batches_left * (time.time() - start_time)/ (batches_done + 1))
# Print log
sys.stdout.write("\r[Epoch %d/%d] [Batch %d/%d] [D adv: %f, aux: %f] [G loss: %f, adv: %f, aux: %f, cycle: %f] ETA: %s" %
(epoch, opt.n_epochs,
i, len(dataloader),
loss_D_adv.item(), loss_D_cls.item(),
loss_G.item(), loss_G_adv.item(),
loss_G_cls.item(), loss_G_rec.item(),
time_left))
# If at sample interval sample and save image
if batches_done % opt.sample_interval == 0:
sample_images(batches_done)
if opt.checkpoint_interval != -1 and epoch % opt.checkpoint_interval == 0:
# Save model checkpoints
torch.save(generator.state_dict(), 'saved_models/generator_%d.pth' % epoch)
torch.save(discriminator.state_dict(), 'saved_models/discriminator_%d.pth' % epoch)