forked from eriklindernoren/PyTorch-GAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsrgan.py
177 lines (138 loc) · 6.8 KB
/
srgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
"""
Super-resolution of CelebA using Generative Adversarial Networks.
The dataset can be downloaded from: https://www.dropbox.com/sh/8oqt9vytwxb3s4r/AADIKlz8PR9zr6Y20qbkunrba/Img/img_align_celeba.zip?dl=0
Instrustion on running the script:
1. Download the dataset from the provided link
2. Save the folder 'img_align_celeba' to '../../data/'
4. Run the sript using command 'python3 srgan.py'
"""
import argparse
import os
import numpy as np
import math
import itertools
import sys
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
from models import *
from datasets import *
import torch.nn as nn
import torch.nn.functional as F
import torch
os.makedirs('images', exist_ok=True)
os.makedirs('saved_models', exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument('--epoch', type=int, default=0, help='epoch to start training from')
parser.add_argument('--n_epochs', type=int, default=200, help='number of epochs of training')
parser.add_argument('--dataset_name', type=str, default="img_align_celeba", help='name of the dataset')
parser.add_argument('--batch_size', type=int, default=1, help='size of the batches')
parser.add_argument('--lr', type=float, default=0.0002, help='adam: learning rate')
parser.add_argument('--b1', type=float, default=0.5, help='adam: decay of first order momentum of gradient')
parser.add_argument('--b2', type=float, default=0.999, help='adam: decay of first order momentum of gradient')
parser.add_argument('--decay_epoch', type=int, default=100, help='epoch from which to start lr decay')
parser.add_argument('--n_cpu', type=int, default=8, help='number of cpu threads to use during batch generation')
parser.add_argument('--hr_height', type=int, default=256, help='size of high res. image height')
parser.add_argument('--hr_width', type=int, default=256, help='size of high res. image width')
parser.add_argument('--channels', type=int, default=3, help='number of image channels')
parser.add_argument('--sample_interval', type=int, default=100, help='interval between sampling of images from generators')
parser.add_argument('--checkpoint_interval', type=int, default=-1, help='interval between model checkpoints')
opt = parser.parse_args()
print(opt)
cuda = True if torch.cuda.is_available() else False
# Calculate output of image discriminator (PatchGAN)
patch_h, patch_w = int(opt.hr_height / 2**4), int(opt.hr_width / 2**4)
patch = (opt.batch_size, 1, patch_h, patch_w)
# Initialize generator and discriminator
generator = GeneratorResNet()
discriminator = Discriminator()
feature_extractor = FeatureExtractor()
# Losses
criterion_GAN = torch.nn.MSELoss()
criterion_content = torch.nn.L1Loss()
if cuda:
generator = generator.cuda()
discriminator = discriminator.cuda()
feature_extractor = feature_extractor.cuda()
criterion_GAN = criterion_GAN.cuda()
criterion_content = criterion_content.cuda()
if opt.epoch != 0:
# Load pretrained models
generator.load_state_dict(torch.load('saved_models/generator_%d.pth'))
discriminator.load_state_dict(torch.load('saved_models/discriminator_%d.pth'))
else:
# Initialize weights
generator.apply(weights_init_normal)
discriminator.apply(weights_init_normal)
# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
# Inputs & targets memory allocation
Tensor = torch.cuda.FloatTensor if cuda else torch.Tensor
input_lr = Tensor(opt.batch_size, opt.channels, opt.hr_height//4, opt.hr_width//4)
input_hr = Tensor(opt.batch_size, opt.channels, opt.hr_height, opt.hr_width)
# Adversarial ground truths
valid = Variable(Tensor(np.ones(patch)), requires_grad=False)
fake = Variable(Tensor(np.zeros(patch)), requires_grad=False)
# Transforms for low resolution images and high resolution images
lr_transforms = [ transforms.Resize((opt.hr_height//4, opt.hr_height//4), Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)) ]
hr_transforms = [ transforms.Resize((opt.hr_height, opt.hr_height), Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)) ]
dataloader = DataLoader(ImageDataset("../../data/%s" % opt.dataset_name, lr_transforms=lr_transforms, hr_transforms=hr_transforms),
batch_size=opt.batch_size, shuffle=True, num_workers=opt.n_cpu)
# ----------
# Training
# ----------
for epoch in range(opt.epoch, opt.n_epochs):
for i, imgs in enumerate(dataloader):
# Configure model input
imgs_lr = Variable(input_lr.copy_(imgs['lr']))
imgs_hr = Variable(input_hr.copy_(imgs['hr']))
# ------------------
# Train Generators
# ------------------
optimizer_G.zero_grad()
# Generate a high resolution image from low resolution input
gen_hr = generator(imgs_lr)
# Adversarial loss
gen_validity = discriminator(gen_hr)
loss_GAN = criterion_GAN(gen_validity, valid)
# Content loss
gen_features = feature_extractor(gen_hr)
real_features = Variable(feature_extractor(imgs_hr).data, requires_grad=False)
loss_content = criterion_content(gen_features, real_features)
# Total loss
loss_G = loss_content + 1e-3 * loss_GAN
loss_G.backward()
optimizer_G.step()
# ---------------------
# Train Discriminator
# ---------------------
optimizer_D.zero_grad()
# Loss of real and fake images
loss_real = criterion_GAN(discriminator(imgs_hr), valid)
loss_fake = criterion_GAN(discriminator(gen_hr.detach()), fake)
# Total loss
loss_D = (loss_real + loss_fake) / 2
loss_D.backward()
optimizer_D.step()
# --------------
# Log Progress
# --------------
print("[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" %
(epoch, opt.n_epochs, i, len(dataloader),
loss_D.item(), loss_G.item()))
batches_done = epoch * len(dataloader) + i
if batches_done % opt.sample_interval == 0:
# Save image sample
save_image(torch.cat((gen_hr.data, imgs_hr.data), -2),
'images/%d.png' % batches_done, normalize=True)
if opt.checkpoint_interval != -1 and epoch % opt.checkpoint_interval == 0:
# Save model checkpoints
torch.save(generator.state_dict(), 'saved_models/generator_%d.pth' % epoch)
torch.save(discriminator.state_dict(), 'saved_models/discriminator_%d.pth' % epoch)