forked from eriklindernoren/PyTorch-GAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpixelda.py
292 lines (229 loc) · 10.5 KB
/
pixelda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import argparse
import os
import numpy as np
import math
import itertools
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
from mnistm import MNISTM
import torch.nn as nn
import torch.nn.functional as F
import torch
os.makedirs('images', exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument('--n_epochs', type=int, default=200, help='number of epochs of training')
parser.add_argument('--batch_size', type=int, default=64, help='size of the batches')
parser.add_argument('--lr', type=float, default=0.0002, help='adam: learning rate')
parser.add_argument('--b1', type=float, default=0.5, help='adam: decay of first order momentum of gradient')
parser.add_argument('--b2', type=float, default=0.999, help='adam: decay of first order momentum of gradient')
parser.add_argument('--n_cpu', type=int, default=8, help='number of cpu threads to use during batch generation')
parser.add_argument('--n_residual_blocks', type=int, default=6, help='number of residual blocks in generator')
parser.add_argument('--latent_dim', type=int, default=10, help='dimensionality of the noise input')
parser.add_argument('--img_size', type=int, default=32, help='size of each image dimension')
parser.add_argument('--channels', type=int, default=3, help='number of image channels')
parser.add_argument('--n_classes', type=int, default=10, help='number of classes in the dataset')
parser.add_argument('--sample_interval', type=int, default=300, help='interval betwen image samples')
opt = parser.parse_args()
print(opt)
# Calculate output of image discriminator (PatchGAN)
patch = int(opt.img_size / 2**4)
patch = (1, patch, patch)
cuda = True if torch.cuda.is_available() else False
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
class ResidualBlock(nn.Module):
def __init__(self, in_features=64, out_features=64):
super(ResidualBlock, self).__init__()
self.block = nn.Sequential(
nn.Conv2d(in_features, in_features, 3, 1, 1),
nn.BatchNorm2d(in_features),
nn.ReLU(inplace=True),
nn.Conv2d(in_features, in_features, 3, 1, 1),
nn.BatchNorm2d(in_features)
)
def forward(self, x):
return x + self.block(x)
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
# Fully-connected layer which constructs image channel shaped output from noise
self.fc = nn.Linear(opt.latent_dim, opt.channels*opt.img_size**2)
self.l1 = nn.Sequential(nn.Conv2d(opt.channels*2, 64, 3, 1, 1), nn.ReLU(inplace=True))
resblocks = []
for _ in range(opt.n_residual_blocks):
resblocks.append(ResidualBlock())
self.resblocks = nn.Sequential(*resblocks)
self.l2 = nn.Sequential(nn.Conv2d(64, opt.channels, 3, 1, 1), nn.Tanh())
def forward(self, img, z):
gen_input = torch.cat((img, self.fc(z).view(*img.shape)), 1)
out = self.l1(gen_input)
out = self.resblocks(out)
img_ = self.l2(out)
return img_
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
def block(in_features, out_features, normalization=True):
"""Discriminator block"""
layers = [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True) ]
if normalization:
layers.append(nn.InstanceNorm2d(out_features))
return layers
self.model = nn.Sequential(
*block(opt.channels, 64, normalization=False),
*block(64, 128),
*block(128, 256),
*block(256, 512),
nn.Conv2d(512, 1, 3, 1, 1)
)
def forward(self, img):
validity = self.model(img)
return validity
class Classifier(nn.Module):
def __init__(self):
super(Classifier, self).__init__()
def block(in_features, out_features, normalization=True):
"""Classifier block"""
layers = [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True) ]
if normalization:
layers.append(nn.InstanceNorm2d(out_features))
return layers
self.model = nn.Sequential(
*block(opt.channels, 64, normalization=False),
*block(64, 128),
*block(128, 256),
*block(256, 512)
)
input_size = opt.img_size // 2**4
self.output_layer = nn.Sequential(
nn.Linear(512*input_size**2, opt.n_classes),
nn.Softmax()
)
def forward(self, img):
feature_repr = self.model(img)
feature_repr = feature_repr.view(feature_repr.size(0), -1)
label = self.output_layer(feature_repr)
return label
# Loss function
adversarial_loss = torch.nn.MSELoss()
task_loss = torch.nn.CrossEntropyLoss()
# Loss weights
lambda_adv = 1
lambda_task = 0.1
# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()
classifier = Classifier()
if cuda:
generator.cuda()
discriminator.cuda()
classifier.cuda()
adversarial_loss.cuda()
task_loss.cuda()
# Initialize weights
generator.apply(weights_init_normal)
discriminator.apply(weights_init_normal)
classifier.apply(weights_init_normal)
# Configure data loader
os.makedirs('../../data/mnist', exist_ok=True)
dataloader_A = torch.utils.data.DataLoader(
datasets.MNIST('../../data/mnist', train=True, download=True,
transform=transforms.Compose([
transforms.Resize(opt.img_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])),
batch_size=opt.batch_size, shuffle=True)
os.makedirs('../../data/mnistm', exist_ok=True)
dataloader_B = torch.utils.data.DataLoader(
MNISTM('../../data/mnistm', train=True, download=True,
transform=transforms.Compose([
transforms.Resize(opt.img_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])),
batch_size=opt.batch_size, shuffle=True)
# Optimizers
optimizer_G = torch.optim.Adam( itertools.chain(generator.parameters(), classifier.parameters()),
lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor
# ----------
# Training
# ----------
# Keeps 100 accuracy measurements
task_performance = []
target_performance = []
for epoch in range(opt.n_epochs):
for i, ((imgs_A, labels_A), (imgs_B, labels_B)) in enumerate(zip(dataloader_A, dataloader_B)):
batch_size = imgs_A.size(0)
# Adversarial ground truths
valid = Variable(FloatTensor(batch_size, *patch).fill_(1.0), requires_grad=False)
fake = Variable(FloatTensor(batch_size, *patch).fill_(0.0), requires_grad=False)
# Configure input
imgs_A = Variable(imgs_A.type(FloatTensor).expand(batch_size, 3, opt.img_size, opt.img_size))
labels_A = Variable(labels_A.type(LongTensor))
imgs_B = Variable(imgs_B.type(FloatTensor))
# -----------------
# Train Generator
# -----------------
optimizer_G.zero_grad()
# Sample noise
z = Variable(FloatTensor(np.random.uniform(-1, 1, (batch_size, opt.latent_dim))))
# Generate a batch of images
fake_B = generator(imgs_A, z)
# Perform task on translated source image
label_pred = classifier(fake_B)
# Calculate the task loss
task_loss_ = (task_loss(label_pred, labels_A) + \
task_loss(classifier(imgs_A), labels_A)) / 2
# Loss measures generator's ability to fool the discriminator
g_loss = lambda_adv * adversarial_loss(discriminator(fake_B), valid) + \
lambda_task * task_loss_
g_loss.backward()
optimizer_G.step()
# ---------------------
# Train Discriminator
# ---------------------
optimizer_D.zero_grad()
# Measure discriminator's ability to classify real from generated samples
real_loss = adversarial_loss(discriminator(imgs_B), valid)
fake_loss = adversarial_loss(discriminator(fake_B.detach()), fake)
d_loss = (real_loss + fake_loss) / 2
d_loss.backward()
optimizer_D.step()
# ---------------------------------------
# Evaluate Performance on target domain
# ---------------------------------------
# Evaluate performance on translated Domain A
acc = np.mean(np.argmax(label_pred.data.cpu().numpy(), axis=1) == labels_A.data.cpu().numpy())
task_performance.append(acc)
if len(task_performance) > 100:
task_performance.pop(0)
# Evaluate performance on Domain B
pred_B = classifier(imgs_B)
target_acc = np.mean(np.argmax(pred_B.data.cpu().numpy(), axis=1) == labels_B.numpy())
target_performance.append(target_acc)
if len(target_performance) > 100:
target_performance.pop(0)
print ("[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f] [CLF acc: %3d%% (%3d%%), target_acc: %3d%% (%3d%%)]" %
(epoch, opt.n_epochs,
i, len(dataloader_A),
d_loss.item(), g_loss.item(),
100*acc, 100*np.mean(task_performance),
100*target_acc, 100*np.mean(target_performance)))
batches_done = len(dataloader_A) * epoch + i
if batches_done % opt.sample_interval == 0:
sample = torch.cat((imgs_A.data[:5], fake_B.data[:5], imgs_B.data[:5]), -2)
save_image(sample, 'images/%d.png' % batches_done, nrow=int(math.sqrt(batch_size)), normalize=True)