forked from eriklindernoren/PyTorch-GAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dualgan.py
234 lines (188 loc) · 8.88 KB
/
dualgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import argparse
import os
import numpy as np
import math
import itertools
import scipy
import sys
import time
import datetime
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import torch.autograd as autograd
from datasets import *
from models import *
import torch.nn as nn
import torch.nn.functional as F
import torch
os.makedirs('images', exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument('--epoch', type=int, default=0, help='epoch to start training from')
parser.add_argument('--n_epochs', type=int, default=200, help='number of epochs of training')
parser.add_argument('--batch_size', type=int, default=8, help='size of the batches')
parser.add_argument('--dataset_name', type=str, default='edges2shoes', help='name of the dataset')
parser.add_argument('--lr', type=float, default=0.0002, help='adam: learning rate')
parser.add_argument('--b1', type=float, default=0.5, help='adam: decay of first order momentum of gradient')
parser.add_argument('--b2', type=float, default=0.999, help='adam: decay of first order momentum of gradient')
parser.add_argument('--n_cpu', type=int, default=8, help='number of cpu threads to use during batch generation')
parser.add_argument('--img_size', type=int, default=128, help='size of each image dimension')
parser.add_argument('--channels', type=int, default=3, help='number of image channels')
parser.add_argument('--n_critic', type=int, default=5, help='number of training steps for discriminator per iter')
parser.add_argument('--sample_interval', type=int, default=200, help='interval betwen image samples')
parser.add_argument('--checkpoint_interval', type=int, default=-1, help='interval between model checkpoints')
opt = parser.parse_args()
print(opt)
os.makedirs('images/%s' % opt.dataset_name, exist_ok=True)
os.makedirs('saved_models/%s' % opt.dataset_name, exist_ok=True)
img_shape = (opt.channels, opt.img_size, opt.img_size)
cuda = True if torch.cuda.is_available() else False
# Loss function
cycle_loss = torch.nn.L1Loss()
# Loss weights
lambda_adv = 1
lambda_cycle = 10
lambda_gp = 10
# Initialize generator and discriminator
G_AB = Generator()
G_BA = Generator()
D_A = Discriminator()
D_B = Discriminator()
if cuda:
G_AB.cuda()
G_BA.cuda()
D_A.cuda()
D_B.cuda()
cycle_loss.cuda()
if opt.epoch != 0:
# Load pretrained models
G_AB.load_state_dict(torch.load('saved_models/%s/G_AB_%d.pth' % (opt.dataset_name, opt.epoch)))
G_BA.load_state_dict(torch.load('saved_models/%s/G_BA_%d.pth' % (opt.dataset_name, opt.epoch)))
D_A.load_state_dict(torch.load('saved_models/%s/D_A_%d.pth' % (opt.dataset_name, opt.epoch)))
D_B.load_state_dict(torch.load('saved_models/%s/D_B_%d.pth' % (opt.dataset_name, opt.epoch)))
else:
# Initialize weights
G_AB.apply(weights_init_normal)
G_BA.apply(weights_init_normal)
D_A.apply(weights_init_normal)
D_B.apply(weights_init_normal)
# Configure data loader
transforms_ = [ transforms.Resize((opt.img_size, opt.img_size), Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)) ]
dataloader = DataLoader(ImageDataset("../../data/%s" % opt.dataset_name, transforms_=transforms_),
batch_size=opt.batch_size, shuffle=True, num_workers=opt.n_cpu)
val_dataloader = DataLoader(ImageDataset("../../data/%s" % opt.dataset_name, mode='val', transforms_=transforms_),
batch_size=16, shuffle=True, num_workers=1)
# Optimizers
optimizer_G = torch.optim.Adam( itertools.chain(G_AB.parameters(), G_BA.parameters()),
lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D_A = torch.optim.Adam(D_A.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D_B = torch.optim.Adam(D_B.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor
def compute_gradient_penalty(D, real_samples, fake_samples):
"""Calculates the gradient penalty loss for WGAN GP"""
# Random weight term for interpolation between real and fake samples
alpha = FloatTensor(np.random.random((real_samples.size(0), 1, 1, 1)))
# Get random interpolation between real and fake samples
interpolates = (alpha * real_samples + ((1 - alpha) * fake_samples)).requires_grad_(True)
validity = D(interpolates)
fake = Variable(FloatTensor(np.ones(validity.shape)), requires_grad=False)
# Get gradient w.r.t. interpolates
gradients = autograd.grad(outputs=validity, inputs=interpolates,
grad_outputs=fake, create_graph=True, retain_graph=True,
only_inputs=True)[0]
gradients = gradients.view(gradients.size(0), -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
return gradient_penalty
def sample_images(batches_done):
"""Saves a generated sample from the test set"""
imgs = next(iter(val_dataloader))
real_A = Variable(imgs['A'].type(FloatTensor))
fake_B = G_AB(real_A)
AB = torch.cat((real_A.data, fake_B.data), -2)
real_B = Variable(imgs['B'].type(FloatTensor))
fake_A = G_BA(real_B)
BA = torch.cat((real_B.data, fake_A.data), -2)
img_sample = torch.cat((AB, BA), 0)
save_image(img_sample, 'images/%s/%s.png' % (opt.dataset_name, batches_done), nrow=8, normalize=True)
# ----------
# Training
# ----------
batches_done = 0
prev_time = time.time()
for epoch in range(opt.n_epochs):
for i, batch in enumerate(dataloader):
# Configure input
imgs_A = Variable(batch['A'].type(FloatTensor))
imgs_B = Variable(batch['B'].type(FloatTensor))
# ----------------------
# Train Discriminators
# ----------------------
optimizer_D_A.zero_grad()
optimizer_D_B.zero_grad()
# Generate a batch of images
fake_A = G_BA(imgs_B).detach()
fake_B = G_AB(imgs_A).detach()
#----------
# Domain A
#----------
# Compute gradient penalty for improved wasserstein training
gp_A = compute_gradient_penalty(D_A, imgs_A.data, fake_A.data)
# Adversarial loss
D_A_loss = -torch.mean(D_A(imgs_A)) + torch.mean(D_A(fake_A)) + lambda_gp * gp_A
#----------
# Domain B
#----------
# Compute gradient penalty for improved wasserstein training
gp_B = compute_gradient_penalty(D_B, imgs_B.data, fake_B.data)
# Adversarial loss
D_B_loss = -torch.mean(D_B(imgs_B)) + torch.mean(D_B(fake_B)) + lambda_gp * gp_B
# Total loss
D_loss = D_A_loss + D_B_loss
D_loss.backward()
optimizer_D_A.step()
optimizer_D_B.step()
if i % opt.n_critic == 0:
# ------------------
# Train Generators
# ------------------
optimizer_G.zero_grad()
# Translate images to opposite domain
fake_A = G_BA(imgs_B)
fake_B = G_AB(imgs_A)
# Reconstruct images
recov_A = G_BA(fake_B)
recov_B = G_AB(fake_A)
# Adversarial loss
G_adv = -torch.mean(D_A(fake_A)) - torch.mean(D_B(fake_B))
# Cycle loss
G_cycle = cycle_loss(recov_A, imgs_A) + cycle_loss(recov_B, imgs_B)
# Total loss
G_loss = lambda_adv * G_adv + lambda_cycle * G_cycle
G_loss.backward()
optimizer_G.step()
#--------------
# Log Progress
#--------------
# Determine approximate time left
batches_left = opt.n_epochs * len(dataloader) - batches_done
time_left = datetime.timedelta(seconds=batches_left * (time.time() - prev_time) / opt.n_critic)
prev_time = time.time()
sys.stdout.write("\r[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f, cycle: %f] ETA: %s" % (epoch, opt.n_epochs,
i, len(dataloader),
D_loss.item(), G_adv.data.item(),
G_cycle.item(), time_left))
# Check sample interval => save sample if there
if batches_done % opt.sample_interval == 0:
sample_images(batches_done)
batches_done += 1
if opt.checkpoint_interval != -1 and epoch % opt.checkpoint_interval == 0:
# Save model checkpoints
torch.save(G_AB.state_dict(), 'saved_models/%s/G_AB_%d.pth' % (opt.dataset_name, epoch))
torch.save(G_BA.state_dict(), 'saved_models/%s/G_BA_%d.pth' % (opt.dataset_name, epoch))
torch.save(D_A.state_dict(), 'saved_models/%s/D_A_%d.pth' % (opt.dataset_name, epoch))
torch.save(D_B.state_dict(), 'saved_models/%s/D_B_%d.pth' % (opt.dataset_name, epoch))