forked from eriklindernoren/PyTorch-GAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cogan.py
224 lines (180 loc) · 8.2 KB
/
cogan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import argparse
import os
import numpy as np
import math
import scipy
import itertools
import mnistm
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch
os.makedirs('images', exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument('--n_epochs', type=int, default=200, help='number of epochs of training')
parser.add_argument('--batch_size', type=int, default=32, help='size of the batches')
parser.add_argument('--lr', type=float, default=0.0002, help='adam: learning rate')
parser.add_argument('--b1', type=float, default=0.5, help='adam: decay of first order momentum of gradient')
parser.add_argument('--b2', type=float, default=0.999, help='adam: decay of first order momentum of gradient')
parser.add_argument('--n_cpu', type=int, default=8, help='number of cpu threads to use during batch generation')
parser.add_argument('--latent_dim', type=int, default=100, help='dimensionality of the latent space')
parser.add_argument('--img_size', type=int, default=32, help='size of each image dimension')
parser.add_argument('--channels', type=int, default=3, help='number of image channels')
parser.add_argument('--sample_interval', type=int, default=400, help='interval betwen image samples')
opt = parser.parse_args()
print(opt)
img_shape = (opt.channels, opt.img_size, opt.img_size)
cuda = True if torch.cuda.is_available() else False
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
class CoupledGenerators(nn.Module):
def __init__(self):
super(CoupledGenerators, self).__init__()
self.init_size = opt.img_size // 4
self.fc = nn.Sequential(nn.Linear(opt.latent_dim, 128*self.init_size**2))
self.shared_conv = nn.Sequential(
nn.BatchNorm2d(128),
nn.Upsample(scale_factor=2),
nn.Conv2d(128, 128, 3, stride=1, padding=1),
nn.BatchNorm2d(128, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Upsample(scale_factor=2),
)
self.G1 = nn.Sequential(
nn.Conv2d(128, 64, 3, stride=1, padding=1),
nn.BatchNorm2d(64, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, opt.channels, 3, stride=1, padding=1),
nn.Tanh()
)
self.G2 = nn.Sequential(
nn.Conv2d(128, 64, 3, stride=1, padding=1),
nn.BatchNorm2d(64, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, opt.channels, 3, stride=1, padding=1),
nn.Tanh()
)
def forward(self, noise):
out = self.fc(noise)
out = out.view(out.shape[0], 128, self.init_size, self.init_size)
img_emb = self.shared_conv(out)
img1 = self.G1(img_emb)
img2 = self.G2(img_emb)
return img1, img2
class CoupledDiscriminators(nn.Module):
def __init__(self):
super(CoupledDiscriminators, self).__init__()
def discriminator_block(in_filters, out_filters, bn=True):
block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1)]
if bn:
block.append(nn.BatchNorm2d(out_filters, 0.8))
block.extend([nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25)])
return block
self.shared_conv = nn.Sequential(
*discriminator_block(opt.channels, 16, bn=False),
*discriminator_block(16, 32),
*discriminator_block(32, 64),
*discriminator_block(64, 128),
)
# The height and width of downsampled image
ds_size = opt.img_size // 2**4
self.D1 = nn.Linear(128*ds_size**2, 1)
self.D2 = nn.Linear(128*ds_size**2, 1)
def forward(self, img1, img2):
# Determine validity of first image
out = self.shared_conv(img1)
out = out.view(out.shape[0], -1)
validity1 = self.D1(out)
# Determine validity of second image
out = self.shared_conv(img2)
out = out.view(out.shape[0], -1)
validity2 = self.D2(out)
return validity1, validity2
# Loss function
adversarial_loss = torch.nn.MSELoss()
# Initialize models
coupled_generators = CoupledGenerators()
coupled_discriminators = CoupledDiscriminators()
if cuda:
coupled_generators.cuda()
coupled_discriminators.cuda()
# Initialize weights
coupled_generators.apply(weights_init_normal)
coupled_discriminators.apply(weights_init_normal)
# Configure data loader
os.makedirs('../../data/mnist', exist_ok=True)
dataloader1 = torch.utils.data.DataLoader(
datasets.MNIST('../../data/mnist', train=True, download=True,
transform=transforms.Compose([
transforms.Resize(opt.img_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])),
batch_size=opt.batch_size, shuffle=True)
os.makedirs('../../data/mnistm', exist_ok=True)
dataloader2 = torch.utils.data.DataLoader(
mnistm.MNISTM('../../data/mnistm', train=True, download=True,
transform=transforms.Compose([
transforms.Resize(opt.img_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])),
batch_size=opt.batch_size, shuffle=True)
# Optimizers
optimizer_G = torch.optim.Adam(coupled_generators.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(coupled_discriminators.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
# ----------
# Training
# ----------
for epoch in range(opt.n_epochs):
for i, ((imgs1, _), (imgs2, _)) in enumerate(zip(dataloader1, dataloader2)):
batch_size = imgs1.shape[0]
# Adversarial ground truths
valid = Variable(Tensor(batch_size, 1).fill_(1.0), requires_grad=False)
fake = Variable(Tensor(batch_size, 1).fill_(0.0), requires_grad=False)
# Configure input
imgs1 = Variable(imgs1.type(Tensor).expand(imgs1.size(0), 3, opt.img_size, opt.img_size))
imgs2 = Variable(imgs2.type(Tensor))
# ------------------
# Train Generators
# ------------------
optimizer_G.zero_grad()
# Sample noise as generator input
z = Variable(Tensor(np.random.normal(0, 1, (batch_size, opt.latent_dim))))
# Generate a batch of images
gen_imgs1, gen_imgs2 = coupled_generators(z)
# Determine validity of generated images
validity1, validity2 = coupled_discriminators(gen_imgs1, gen_imgs2)
g_loss = (adversarial_loss(validity1, valid) + \
adversarial_loss(validity2, valid)) / 2
g_loss.backward()
optimizer_G.step()
# ----------------------
# Train Discriminators
# ----------------------
optimizer_D.zero_grad()
# Determine validity of real and generated images
validity1_real, validity2_real = coupled_discriminators(imgs1, imgs2)
validity1_fake, validity2_fake = coupled_discriminators(gen_imgs1.detach(), gen_imgs2.detach())
d_loss = (adversarial_loss(validity1_real, valid) + \
adversarial_loss(validity1_fake, fake) + \
adversarial_loss(validity2_real, valid) + \
adversarial_loss(validity2_fake, fake)) / 4
d_loss.backward()
optimizer_D.step()
print ("[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, opt.n_epochs, i, len(dataloader1),
d_loss.item(), g_loss.item()))
batches_done = epoch * len(dataloader1) + i
if batches_done % opt.sample_interval == 0:
gen_imgs = torch.cat((gen_imgs1.data, gen_imgs2.data), 0)
save_image(gen_imgs, 'images/%d.png' % batches_done, nrow=8, normalize=True)