forked from eriklindernoren/PyTorch-GAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbicyclegan.py
249 lines (200 loc) · 9.55 KB
/
bicyclegan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import argparse
import os
import numpy as np
import math
import itertools
import datetime
import time
import sys
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
from models import *
from datasets import *
import torch.nn as nn
import torch.nn.functional as F
import torch
parser = argparse.ArgumentParser()
parser.add_argument('--epoch', type=int, default=0, help='epoch to start training from')
parser.add_argument('--n_epochs', type=int, default=200, help='number of epochs of training')
parser.add_argument('--dataset_name', type=str, default="edges2shoes", help='name of the dataset')
parser.add_argument('--batch_size', type=int, default=8, help='size of the batches')
parser.add_argument('--lr', type=float, default=0.0002, help='adam: learning rate')
parser.add_argument('--b1', type=float, default=0.5, help='adam: decay of first order momentum of gradient')
parser.add_argument('--b2', type=float, default=0.999, help='adam: decay of first order momentum of gradient')
parser.add_argument('--n_cpu', type=int, default=8, help='number of cpu threads to use during batch generation')
parser.add_argument('--img_height', type=int, default=128, help='size of image height')
parser.add_argument('--img_width', type=int, default=128, help='size of image width')
parser.add_argument('--channels', type=int, default=3, help='number of image channels')
parser.add_argument('--latent_dim', type=int, default=8, help='number of latent codes')
parser.add_argument('--sample_interval', type=int, default=400, help='interval between sampling of images from generators')
parser.add_argument('--checkpoint_interval', type=int, default=-1, help='interval between model checkpoints')
opt = parser.parse_args()
print(opt)
os.makedirs('images/%s' % opt.dataset_name, exist_ok=True)
os.makedirs('saved_models/%s' % opt.dataset_name, exist_ok=True)
cuda = True if torch.cuda.is_available() else False
img_shape = (opt.channels, opt.img_height, opt.img_width)
# Loss functions
mae_loss = torch.nn.L1Loss()
# Initialize generator, encoder and discriminators
generator = Generator(opt.latent_dim, img_shape)
encoder = Encoder(opt.latent_dim)
D_VAE = MultiDiscriminator()
D_LR = MultiDiscriminator()
if cuda:
generator = generator.cuda()
encoder.cuda()
D_VAE = D_VAE.cuda()
D_LR = D_LR.cuda()
mae_loss.cuda()
if opt.epoch != 0:
# Load pretrained models
generator.load_state_dict(torch.load('saved_models/%s/generator_%d.pth' % (opt.dataset_name, opt.epoch)))
encoder.load_state_dict(torch.load('saved_models/%s/encoder_%d.pth' % (opt.dataset_name, opt.epoch)))
D_VAE.load_state_dict(torch.load('saved_models/%s/D_VAE_%d.pth' % (opt.dataset_name, opt.epoch)))
D_LR.load_state_dict(torch.load('saved_models/%s/D_LR_%d.pth' % (opt.dataset_name, opt.epoch)))
else:
# Initialize weights
generator.apply(weights_init_normal)
D_VAE.apply(weights_init_normal)
D_LR.apply(weights_init_normal)
# Loss weights
lambda_pixel = 10
lambda_latent = 0.5
lambda_kl = 0.01
# Optimizers
optimizer_E = torch.optim.Adam(encoder.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D_VAE = torch.optim.Adam(D_VAE.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D_LR = torch.optim.Adam(D_LR.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
Tensor = torch.cuda.FloatTensor if cuda else torch.Tensor
# Dataset loader
transforms_ = [ transforms.Resize((opt.img_height, opt.img_width), Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)) ]
dataloader = DataLoader(ImageDataset("../../data/%s" % opt.dataset_name, transforms_=transforms_),
batch_size=opt.batch_size, shuffle=True, num_workers=opt.n_cpu)
val_dataloader = DataLoader(ImageDataset("../../data/%s" % opt.dataset_name, transforms_=transforms_, mode='val'),
batch_size=8, shuffle=True, num_workers=1)
def sample_images(batches_done):
"""Saves a generated sample from the validation set"""
imgs = next(iter(val_dataloader))
img_samples = None
for img_A, img_B in zip(imgs['A'], imgs['B']):
# Repeat input image by number of channels
real_A = img_A.view(1, *img_A.shape).repeat(8, 1, 1, 1)
real_A = Variable(real_A.type(Tensor))
# Get interpolated noise [-1, 1]
sampled_z = np.repeat(np.linspace(-1, 1, 8)[:, np.newaxis], opt.latent_dim, 1)
sampled_z = Variable(Tensor(sampled_z))
# Generator samples
fake_B = generator(real_A, sampled_z)
# Concatenate samples horisontally
fake_B = torch.cat([x for x in fake_B.data.cpu()], -1)
img_sample = torch.cat((img_A, fake_B), -1)
img_sample = img_sample.view(1, *img_sample.shape)
# Cocatenate with previous samples vertically
img_samples = img_sample if img_samples is None else torch.cat((img_samples, img_sample), -2)
save_image(img_samples, 'images/%s/%s.png' % (opt.dataset_name, batches_done), nrow=5, normalize=True)
def reparameterization(mu, logvar):
std = torch.exp(logvar / 2)
sampled_z = Variable(Tensor(np.random.normal(0, 1, (mu.size(0), opt.latent_dim))))
z = sampled_z * std + mu
return z
# ----------
# Training
# ----------
# Adversarial loss
valid = 1
fake = 0
prev_time = time.time()
for epoch in range(opt.epoch, opt.n_epochs):
for i, batch in enumerate(dataloader):
# Set model input
real_A = Variable(batch['A'].type(Tensor))
real_B = Variable(batch['B'].type(Tensor))
#-------------------------------
# Train Generator and Encoder
#-------------------------------
optimizer_E.zero_grad()
optimizer_G.zero_grad()
#----------
# cVAE-GAN
#----------
# Produce output using encoding of B (cVAE-GAN)
mu, logvar = encoder(real_B)
encoded_z = reparameterization(mu, logvar)
fake_B = generator(real_A, encoded_z)
# Pixelwise loss of translated image by VAE
loss_pixel = mae_loss(fake_B, real_B)
# Kullback-Leibler divergence of encoded B
loss_kl = torch.sum(0.5 * (mu**2 + torch.exp(logvar) - logvar - 1))
# Adversarial loss
loss_VAE_GAN = D_VAE.compute_loss(fake_B, valid)
#---------
# cLR-GAN
#---------
# Produce output using sampled z (cLR-GAN)
sampled_z = Variable(Tensor(np.random.normal(0, 1, (real_A.size(0), opt.latent_dim))))
_fake_B = generator(real_A, sampled_z)
# cLR Loss: Adversarial loss
loss_LR_GAN = D_LR.compute_loss(_fake_B, valid)
#----------------------------------
# Total Loss (Generator + Encoder)
#----------------------------------
loss_GE = loss_VAE_GAN + \
loss_LR_GAN + \
lambda_pixel * loss_pixel + \
lambda_kl * loss_kl
loss_GE.backward(retain_graph=True)
optimizer_E.step()
#---------------------
# Generator Only Loss
#---------------------
# Latent L1 loss
_mu, _ = encoder(_fake_B)
loss_latent = lambda_latent * mae_loss(_mu, sampled_z)
loss_latent.backward()
optimizer_G.step()
#----------------------------------
# Train Discriminator (cVAE-GAN)
#----------------------------------
optimizer_D_VAE.zero_grad()
loss_D_VAE = D_VAE.compute_loss(real_B, valid) + \
D_VAE.compute_loss(fake_B.detach(), fake)
loss_D_VAE.backward()
optimizer_D_VAE.step()
#---------------------------------
# Train Discriminator (cLR-GAN)
#---------------------------------
optimizer_D_LR.zero_grad()
loss_D_LR = D_VAE.compute_loss(real_B, valid) + \
D_VAE.compute_loss(_fake_B.detach(), fake)
loss_D_LR.backward()
optimizer_D_LR.step()
# --------------
# Log Progress
# --------------
# Determine approximate time left
batches_done = epoch * len(dataloader) + i
batches_left = opt.n_epochs * len(dataloader) - batches_done
time_left = datetime.timedelta(seconds=batches_left * (time.time() - prev_time))
prev_time = time.time()
# Print log
sys.stdout.write("\r[Epoch %d/%d] [Batch %d/%d] [D VAE_loss: %f, LR_loss: %f] [G loss: %f, pixel: %f, latent: %f] ETA: %s" %
(epoch, opt.n_epochs,
i, len(dataloader),
loss_D_VAE.item(), loss_D_LR.item(),
loss_GE.item(), loss_pixel.item(),
loss_latent.item(), time_left))
if batches_done % opt.sample_interval == 0:
sample_images(batches_done)
if opt.checkpoint_interval != -1 and epoch % opt.checkpoint_interval == 0:
# Save model checkpoints
torch.save(generator.state_dict(), 'saved_models/%s/generator_%d.pth' % (opt.dataset_name, epoch))
torch.save(encoder.state_dict(), 'saved_models/%s/encoder_%d.pth' % (opt.dataset_name, epoch))
torch.save(D_VAE.state_dict(), 'saved_models/%s/D_VAE_%d.pth' % (opt.dataset_name, epoch))
torch.save(D_LR.state_dict(), 'saved_models/%s/D_LR_%d.pth' % (opt.dataset_name, epoch))