Skip to content

Latest commit

 

History

History
132 lines (87 loc) · 12.7 KB

README.md

File metadata and controls

132 lines (87 loc) · 12.7 KB

ICASSP2021_paper_list-VC

Papers accepted to ICASSP 2021 in term of voice conversion (VC)

VC

  1. Maskcyclegan-vc: learning non-parallel voice conversion with filling in frames. (paper,page)
  2. Non-autoregressive sequence-to-sequence voice conversion.
  3. Non-parallel many-to-many voice conversion by knowledge transfer from a text-to-speech model.
  4. Non-parallel many-to-many voice conversion using local linguistic tokens.
  5. PPG-based singing voice conversion with adversarial representation learning.(paper,demo)

Zero-shot and low-resource VC

  1. Again-vc: a one-shot voice conversion using activation guidance and adaptive instance normalization. (paper,code)
  2. Any-to-One Sequence-to-Sequence Voice Conversion using Self-Supervised Discrete Speech Representations. (paper,Espnet parameter)
  3. Fragmentvc: any-to-any voice conversion by end-to-end extracting and fusing fine-grained voice fragments with attention. (paper,code)
  4. End-to-end lyrics recognition with voice to singing style transfer. (paper,demo)
  5. One-shot voice conversion based on speaker aware module
  6. Seen and unseen emotional style transfer for voice conversion with a new emotional speech dataset. (paper,code)
  7. Towards low-resource stargan voice conversion using weight adaptive instance normalization. (paper,code)
  8. Zero-shot voice conversion with adjusted speaker embeddings and simple acoustic features.
  9. Extending parrotron: an end-to-end, speech conversion and speech recognition model for atypical speech.
  10. Zero-shot voice conversion with adjusted speaker embeddings and simple acoustic features.

cross-lingual VC

  1. Multi-task wavernn with an integrated architecture for cross-lingual voice conversion
  2. Towards natural and controllable cross-lingual voice conversion based on neural tts model and phonetic posteriorgram (paper)

Toolkit

  1. crank: an open-source software for nonparallel voice conversion based on vector-quantized variational autoencoder (paper,code)

Dataset

Reading Note

1. Fragmentvc: any-to-any voice conversion by end-to-end extracting and fusing fine-grained voice fragments with attention.

  • 概要:通过Wav2Vec获取source speaker说话人无关的语音内容特征,利用cross-attention的形式从target speaker的语音特征中获取说话人信息,并在decode阶段重构具有source speaker内容和target speaker音色的梅尔普。通过两阶段训练的方式,可以在不利用disentangle等策略和平行语料的条件下,仅通过L1损失实现模型的训练。
  • code: https://github.com/yistLin/FragmentVC

  • 利用在Librispeech上预训练的wav2vec提取source speaker的语义内容特征。
  • Target encoder由一维卷积和激活函数ReLU构成。
  • Extractor: Transformer with self-attention and cross-attention。三个Extractor和对应的三个Conn1d构成了stack式的连接。
  • Smoother: Transformer with only self-attention. Smoother和Extractor中的feed-forward layer由一层一维卷积代替。
  • 由于Wav2Vec不可避免的保留了一些源说话人的信息,作者在Extractor 1中去掉了残差连接,认为这样可以尽可能剔除源说话人的信息。
  • 训练策略: 第一阶段:利用同一个人的同一句话同时作为target和source的输入,以训练模型从Wav2Vec特征重构mel谱特征的能力。第二阶段:target和source的输入依旧来自于同一个人,不同的是,target的输入是10个语音片段的拼接,而source的输入只是一句话。需要注意的是,在开始阶段,source的输入来自于输入target的十句话中的一句,随着训练的进行,逐渐增大来自这十句以外的概率,并最终使得source的输入是来自target十句的概率为0.

2. Maskcyclegan-vc: learning non-parallel voice conversion with filling in frames.

  • 概要:在CycleGAN-VC2基础上,借鉴Bert及image inpainting的训练方法,对source speech添加mask, 并训练conversion网络对mask的区域进行fill.

  • 文中尝试了几种不同的mask概率,包括:1)固定概率 2)在某一个概率范围内的随机选择. 实验发现,mask在概率[0,50]随机选择时效果最好。
  • 文中尝试了几种不同的mask方式,包括:1)连续帧的mask 2)不连续帧的mask 3)对某一个频带范围进行mask 4)离散点的mask. 实验发现连续帧的mask形式,也即示意图中的$m$表现最好。

3. PPG-based singing voice conversion with adversarial representation learning.

  • 概要: 借助PPG特征获取source singer的文本内容信息。但是由于在SVC中源说话人的韵律、节奏等也是很重要的信息,所以文中有引入了Singer Confusion Module来补充源说话人除了音色以外的信息。

  • Singer Confusion Module的训练采用了对抗训练的方式,学习一个singer-indpendent的mel谱特征。为了进一步确保所学特征包含了除音色(singer identity)以外的其他信息,增加了一个Mel-Regressive Representation learning Module。该模块通过将学习到的mel特征和speaker embedding融合并重构原始song.

4. Again-vc: a one-shot voice conversion using activation guidance and adaptive instance normalization.

  • 概要:Again-VC在AdaIN-VC的基础上去掉了单独的Speaker Encoder, 转而利用Content Encoder中的instance normalization操作获取均值和方差信息来传递speaker信息。这一speark信息在decode过程中,通过与content embedding进行Adaptive instance normalization (AdaIN) 操作进行speaker信息的传递。

  • code: https://github.com/KimythAnly/AGAIN-VC

  • 关于instance normalization (IN): 对于一个mel谱$Z$, IN操作如下为: $\operatorname{IN}(Z)=\frac{Z-\mu(Z)}{\sigma(Z)}$,其中平均值$\mu$和方差$\sigma$是基于channel wise的。在AdaIN-VC中,作者认为这种时间不变性的参数$\mu$和$\sigma$是可以代表speaker信息的。

  • Adaptive instance nomalization (AdapIN) 可以看作是IN的逆操作,不过这里采用的$\mu$和$\sigma$是目标说话的参数。比如,如果我们希望保留$H$的内容,但将风格迁移到$Z$的风格上,AdapIN的操作可表示为:$\operatorname{AdaIN}(\boldsymbol{H}, \mu(\boldsymbol{Z}), \sigma(\boldsymbol{Z}))=\sigma(\boldsymbol{Z}) \operatorname{IN}(\boldsymbol{H})+\mu(\boldsymbol{Z})$

  • 文中有意思的一点是关于激活函数的选择。作者认为,通过在encoder的输出层添加激活函数(如图中左下角的Activations)可以更好的去除content embedding中的源说话人信息。文中对比了几种不同的激活函数,发现sigmoid的效果最好。如下表所示,分别利用content embedding ($C$)和由$\mu$及$\sigma$组成的speaker info $S$训练一个speaker的分类器,理想状态下基于$C$的精度越低越好,而基于$S$的精度应该越高越好:

5. Seen and unseen emotional style transfer for voice conversion with a new emotional speech dataset.

  • 与VC不同的是,emtional style transfer只transform情感信息,而保留目标说话人的内容和音色(speaker identiy)信息.
  • 训练采用了平行语料。

6. Towards natural and controllable cross-lingual voice conversion based on neural tts model and phonetic posteriorgram

  • 概要:利用PPGs特征作为桥梁,将cross-lingual voice coversion问题实质上是转换成了source speech - ASR - TTS问题。

  • Controllable: 由于该模型是的输入和输出是等长的,所以通过对输入的PPGs进行上采样或着下采样可以起到调节语速的作用。从这个角度上将,作者将之称为Controllable.
  • 文中TTS的AM采用了Fastspeech, 所以作者也将文中提出的模型称为FastSpeech-VC. Vocoder 采用了LPCNet.

7. End-to-end lyrics recognition with voice to singing style transfer.

  • 概要: 为了解决端到端歌词转译数据不足的问题,文中提出了一种将自然语音转为歌唱嗓音的一种数据增强的方法(V2S, voice to singing)。具体方法是借助了语音和成系统WORLD, 以歌声的基频f0和自然语音的谱包络和aperiodic参数为输入,生成歌声数据。

  • 相比于随机选择歌声和自然语音,作者发现选择基频相近的两组数据可以合成更好的歌声结果。