-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathvahadane.py
98 lines (80 loc) · 3.05 KB
/
vahadane.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import spams
import numpy as np
import cv2
import time
class vahadane(object):
def __init__(self, STAIN_NUM=2, THRESH=0.9, LAMBDA1=0.01, LAMBDA2=0.01, ITER=100, fast_mode=0, getH_mode=0):
self.STAIN_NUM = STAIN_NUM
self.THRESH = THRESH
self.LAMBDA1 = LAMBDA1
self.LAMBDA2 = LAMBDA2
self.ITER = ITER
self.fast_mode = fast_mode # 0: normal; 1: fast
self.getH_mode = getH_mode # 0: spams.lasso; 1: pinv;
def show_config(self):
print('STAIN_NUM =', self.STAIN_NUM)
print('THRESH =', self.THRESH)
print('LAMBDA1 =', self.LAMBDA1)
print('LAMBDA2 =', self.LAMBDA2)
print('ITER =', self.ITER)
print('fast_mode =', self.fast_mode)
print('getH_mode =', self.getH_mode)
def getV(self, img):
I0 = img.reshape((-1,3)).T
I0[I0==0] = 1
V0 = np.log(255 / I0)
img_LAB = cv2.cvtColor(img, cv2.COLOR_RGB2LAB)
mask = img_LAB[:, :, 0] / 255 < self.THRESH
I = img[mask].reshape((-1, 3)).T
I[I == 0] = 1
V = np.log(255 / I)
return V0, V
def getW(self, V):
W = spams.trainDL(np.asfortranarray(V), K=self.STAIN_NUM, lambda1=self.LAMBDA1, iter=self.ITER, mode=2, modeD=0, posAlpha=True, posD=True, verbose=False)
W = W / np.linalg.norm(W, axis=0)[None, :]
if (W[0,0] < W[0,1]):
W = W[:, [1,0]]
return W
def getH(self, V, W):
if (self.getH_mode == 0):
H = spams.lasso(np.asfortranarray(V), np.asfortranarray(W), mode=2, lambda1=self.LAMBDA2, pos=True, verbose=False).toarray()
elif (self.getH_mode == 1):
H = np.linalg.pinv(W).dot(V);
H[H<0] = 0
else:
H = 0
return H
def stain_separate(self, img):
start = time.time()
if (self.fast_mode == 0):
V0, V = self.getV(img)
W = self.getW(V)
H = self.getH(V0, W)
elif (self.fast_mode == 1):
m = img.shape[0]
n = img.shape[1]
grid_size_m = int(m / 5)
lenm = int(m / 20)
grid_size_n = int(n / 5)
lenn = int(n / 20)
W = np.zeros((81, 3, self.STAIN_NUM)).astype(np.float64)
for i in range(0, 4):
for j in range(0, 4):
px = (i + 1) * grid_size_m
py = (j + 1) * grid_size_n
patch = img[px - lenm : px + lenm, py - lenn: py + lenn, :]
V0, V = self.getV(patch)
W[i*9+j] = self.getW(V)
W = np.mean(W, axis=0)
V0, V = self.getV(img)
H = self.getH(V0, W)
print('stain separation time:', time.time()-start, 's')
return W, H
def SPCN(self, img, Ws, Hs, Wt, Ht):
Hs_RM = np.percentile(Hs, 99)
Ht_RM = np.percentile(Ht, 99)
Hs_norm = Hs * Ht_RM / Hs_RM
Vs_norm = np.dot(Wt, Hs_norm)
Is_norm = 255 * np.exp(-1 * Vs_norm)
I = Is_norm.T.reshape(img.shape).astype(np.uint8)
return I