Skip to content

xinchen9/cot_distillation_ACL2024

Repository files navigation

Learning to Maximize Mutual Information for Chain-of-Thought Distillation

Official PyTorch implementation of ACL2024 paper Learning to Maximize Mutual Information for Chain-of-Thought Distillation
TL;DR: This paper formulates Chain-of-Thought (CoT) distillation with information bottleneck and introduces a variational method to estimate mutual information to improve CoT distillation performance.\ The code is based on repo of Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smaller Model Sizes

Environment Setup

  • Setup Conda environment:
conda create --name distill python=3.10.6 -y
conda activate distill
conda install -y pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch
pip install git+https://github.com/huggingface/[email protected] datasets sentencepiece protobuf==3.20.* tensorboardX
  • Extract datasets to datasets/:
unzip datasets.zip

Training Command Usages

Args usages

  • --from_pretrained: google/t5-v1_1-small, google/t5-v1_1-base, google/t5-v1_1-large, google/t5-v1_1-xxl
  • --dataset: esnli, anli1, cqa, svamp
  • --label_type:
    • --label_type gt: Use GT label for training
    • --label_type llm: Use LLM predicted label for training
  • --alpha 0.5: recommended
  • --beta 0.1: recommended
  • --batch_size: Batch size
  • --grad_steps: Gradient accumulation step
  • --max_input_length: Maximum input length
  • --eval_steps: How many steps to evaluate the model during training
  • --max_steps: Maximum steps for training
  • --run: Random seed to use
  • --model_type:
    • standard: Standard finetuning (--label_type gt) or distillation (--label_type llm)
    • task_prefix: Distilling step-by-step
  • --parallelize: Model parallelism
  • --CoT_Distill:
    • --CoT_Distill True: Use CoT distillation, recommended
    • --CoT_Distill False: No CoT distillation

Example usages

  • Standard finetuning:
python main.py --from_pretrained google/t5-v1_1-base --dataset cqa --model_type standard --label_type gt --batch_size 64
  • Distilling step-by-step with GT label and PaLM rationale:
python main.py --from_pretrained google/t5-v1_1-base --dataset cqa --model_type task_prefix --label_type gt --llm palm --alpha 0.5 --batch_size 64
  • Standard distillation:
python run.py --from_pretrained google/t5-v1_1-base --dataset cqa --model_type standard --label_type llm --batch_size 64
  • Distilling step-by-step with PaLM label and PaLM rationale:
python run.py --from_pretrained google/t5-v1_1-base --dataset cqa --model_type task_prefix --label_type llm --llm palm --alpha 0.5 --batch_size 64

T5 Confidence and Calibration Analysis

The script requires specific command-line arguments to run. The primary arguments include specifying the dataset, the training set, and the path to the model checkpoint.

python uncertainty.py --dataset [dataset_name] --trainset [trainset_name] --ckpt_path [path_to_checkpoint]
  • --dataset: Specify the dataset name. Supported datasets are 'cqa', 'svamp', 'esnli', and 'anli1'.
  • --trainset: (Optional) Specify the training dataset name (what training set has the model been trained on). Default is "vanilla".
  • --ckpt_path: (Optional) Provide the path to the model checkpoint. If not provided, the script defaults to using "T5 Small".

Output will be saved under "dataset_{dataset}_model{trainset}_calib_results.txt".

GPU Support

The script detects and utilizes a GPU if available, ensuring efficient processing.

Script to run T5 to generate and evaluate CoT

Evaluation Metrics: BLEU, ROBERTA-based Cosine Similarity (could continuously add more)

Pre-requisite:

pip install evaluate 

Usage:

python explain_test.py --dataset DATASET --ckpt_path CHECKPOINT_PATH 

Example:

python explain_test.py --dataset esnli --ckpt_path esnli_data/esnli_cpt --input ./datasets/cqa/llm/test_CoT_0.json

This would run on esnli test set with esnli checkpoint. The output is a file named as dataset_esnli_model_esnli_data_esnli_cpt_explain.txt, where each line is a pair of Gold COT and predicted COT.

Example:

GOLD COT: The church choir singing to the masses does not necessarily mean that the church has cracks in the ceiling. || PRED COT: The church choir is singing to the masses, not cracks in the ceiling.

Cite

If you find this repository useful, please consider citing:

@inproceedings{chen-etal-2024-learning-maximize,
    title = "Learning to Maximize Mutual Information for Chain-of-Thought Distillation",
    author = "Chen, Xin  and
      Huang, Hanxian  and
      Gao, Yanjun  and
      Wang, Yi  and
      Zhao, Jishen  and
      Ding, Ke",
    editor = "Ku, Lun-Wei  and
      Martins, Andre  and
      Srikumar, Vivek",
    booktitle = "Findings of the Association for Computational Linguistics ACL 2024",
    month = aug,
    year = "2024",
    address = "Bangkok, Thailand and virtual meeting",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.findings-acl.409",
    pages = "6857--6868",
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages