forked from fwillett/handwritingBCI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnnEval.py
151 lines (121 loc) · 5.04 KB
/
rnnEval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import scipy.special
import numpy as np
from kaldiReadWrite import writeKaldiProbabilityMatrix
def evaluateRNNOutput(rnnOutput, numBinsPerSentence, trueText, charDef, charStartThresh=0.3, charStartDelay=15):
"""
Converts the rnn output (character probabilities & a character start signal) into a discrete sentence and computes
char/word error rates. Returns error counts and the decoded sentences.
"""
lgit = rnnOutput[:,:,0:-1]
charStart = rnnOutput[:,:,-1]
#convert output to character strings
decStr = decodeCharStr(lgit, charStart, charStartThresh, charStartDelay,
numBinsPerSentence, charDef['charListAbbr'])
allErrCounts = {}
allErrCounts['charCounts'] = np.zeros([len(trueText)])
allErrCounts['charErrors'] = np.zeros([len(trueText)])
allErrCounts['wordCounts'] = np.zeros([len(trueText)])
allErrCounts['wordErrors'] = np.zeros([len(trueText)])
allDecSentences = []
#compute error rates
for t in range(len(trueText)):
thisTrueText = trueText[t,0][0]
thisTrueText = thisTrueText.replace(' ','')
thisTrueText = thisTrueText.replace('>',' ')
thisTrueText = thisTrueText.replace('~','.')
thisTrueText = thisTrueText.replace('#','')
thisDec = decStr[t]
thisDec = thisDec.replace('>',' ')
thisDec = thisDec.replace('~','.')
nCharErrors = wer(list(thisTrueText), list(thisDec))
nWordErrors = wer(thisTrueText.strip().split(), thisDec.strip().split())
allErrCounts['charCounts'][t] = len(thisTrueText)
allErrCounts['charErrors'][t] = nCharErrors
allErrCounts['wordCounts'][t] = len(thisTrueText.strip().split())
allErrCounts['wordErrors'][t] = nWordErrors
allDecSentences.append(thisDec)
return allErrCounts, allDecSentences
def decodeCharStr(logitMatrix, transSignal, transThresh, transDelay, numBinsPerTrial, charList):
"""
Converts the rnn output (character probabilities & a character start signal) into a discrete sentence.
"""
decWords = []
for v in range(logitMatrix.shape[0]):
logits = np.squeeze(logitMatrix[v,:,:])
bestClass = np.argmax(logits, axis=1)
letTrans = scipy.special.expit(transSignal[v,:])
endIdx = np.ceil(numBinsPerTrial[v]).astype(int)
letTrans = letTrans[0:endIdx[0]]
transIdx = np.argwhere(np.logical_and(letTrans[0:-1]<transThresh, letTrans[1:]>transThresh))
transIdx = transIdx[:,0]
wordStr = ''
for x in range(len(transIdx)):
wordStr += charList[bestClass[transIdx[x]+transDelay]]
decWords.append(wordStr)
return decWords
def wer(r, h):
"""
Calculation of WER with Levenshtein distance.
Works only for iterables up to 254 elements (uint8).
O(nm) time ans space complexity.
Parameters
----------
r : list
h : list
Returns
-------
int
Examples
--------
>>> wer("who is there".split(), "is there".split())
1
>>> wer("who is there".split(), "".split())
3
>>> wer("".split(), "who is there".split())
3
"""
# initialisation
import numpy
d = numpy.zeros((len(r)+1)*(len(h)+1), dtype=numpy.uint8)
d = d.reshape((len(r)+1, len(h)+1))
for i in range(len(r)+1):
for j in range(len(h)+1):
if i == 0:
d[0][j] = j
elif j == 0:
d[i][0] = i
# computation
for i in range(1, len(r)+1):
for j in range(1, len(h)+1):
if r[i-1] == h[j-1]:
d[i][j] = d[i-1][j-1]
else:
substitution = d[i-1][j-1] + 1
insertion = d[i][j-1] + 1
deletion = d[i-1][j] + 1
d[i][j] = min(substitution, insertion, deletion)
return d[len(r)][len(h)]
def rnnOutputToKaldiMatrices(rnnOutput, numBinsPerSentence, charDef, kaldiDir):
"""
Converts the rnn output into probability matrices that Kaldi can read, one for each sentence.
As part of the conversion, this function creates a CTC blank signal from the character start signal so
that the language model is happy (it was designed for a CTC loss).
"""
lgit = rnnOutput[:,:,0:-1]
charProb = np.exp(lgit)/np.sum(np.exp(lgit),axis=2,keepdims=True)
charStart = rnnOutput[:,:,-1]
fakeCTC = np.ones(charStart.shape)
fakeCTC[:,20:] = 1-scipy.special.expit(4 + 4*charStart[:,0:-20])
nChar = rnnOutput.shape[2]-1
probCombined = np.concatenate([charProb, fakeCTC[:,:,np.newaxis]],axis=2)
probCombined[:,:,0:nChar] *= 1-fakeCTC[:,:,np.newaxis]
allMatrices = []
for t in range(rnnOutput.shape[0]):
startIdx = 0
endIdx = int(numBinsPerSentence[t,0])
charProb = np.transpose(probCombined[t,startIdx:endIdx:5,charDef['idxToKaldi']])
charProb[charProb==0] = 1e-13
charProb = np.log(charProb)
writeKaldiProbabilityMatrix(charProb, t, kaldiDir + 'kaldiMat_'+str(t)+'.txt')
allMatrices.append(charProb)
return allMatrices