forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
blip-base_8xb32_retrieval.py
83 lines (76 loc) · 2.04 KB
/
blip-base_8xb32_retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
_base_ = [
'../_base_/datasets/coco_retrieval.py',
'../_base_/default_runtime.py',
]
# model settings
model = dict(
type='BlipRetrieval',
tokenizer=dict(type='BlipTokenizer', name_or_path='bert-base-uncased'),
vision_backbone=dict(
type='VisionTransformer',
arch='b',
img_size=384,
patch_size=16,
out_type='raw',
),
text_backbone=dict(
type='XBertEncoder',
med_config=dict(
architectures=['BertModel'],
attention_probs_dropout_prob=0.1,
hidden_act='gelu',
hidden_dropout_prob=0.1,
hidden_size=768,
initializer_range=0.02,
intermediate_size=3072,
layer_norm_eps=1e-12,
max_position_embeddings=512,
model_type='bert',
num_attention_heads=12,
num_hidden_layers=12,
pad_token_id=0,
add_type_embeddings=False,
vocab_size=30524,
encoder_width=768,
add_cross_attention=True),
),
vision_neck=dict(
type='Linear',
in_features=768,
out_features=256,
),
text_neck=dict(
type='Linear',
in_features=768,
out_features=256,
),
head=dict(
type='ITCHead',
embed_dim=256,
),
multimodal_head=dict(
type='ITMHead',
hidden_size=768,
with_pooler=False,
),
topk=256,
max_txt_len=35,
)
# optimizer
optimizer = dict(type='AdamW', lr=2e-5, weight_decay=0.04)
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
# learning rate scheduler
param_scheduler = [dict(type='CosineAnnealingLR', by_epoch=True)]
# runtime settings
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=6)
val_cfg = dict(type='RetrievalValLoop')
test_cfg = dict(type='RetrievalTestLoop')
randomness = dict(seed=42)
default_hooks = dict(logger=dict(interval=1))
custom_hooks = [
dict(
type='WarmupParamHook',
param_name='alpha',
module_name='head',
warmup_epochs=2)
]