forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
blip-base_8xb32_nlvr.py
59 lines (54 loc) · 1.49 KB
/
blip-base_8xb32_nlvr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
_base_ = [
'../_base_/datasets/nlvr2.py',
'../_base_/default_runtime.py',
]
# model settings
model = dict(
type='BlipNLVR',
vision_backbone=dict(
type='VisionTransformer',
arch='b',
img_size=384,
patch_size=16,
out_type='raw',
),
tokenizer=dict(type='BlipTokenizer', name_or_path='bert-base-uncased'),
multimodal_backbone=dict(
type='BertModel',
config=dict(
architectures=['BertModel'],
attention_probs_dropout_prob=0.1,
hidden_act='gelu',
hidden_dropout_prob=0.1,
hidden_size=768,
initializer_range=0.02,
intermediate_size=3072,
layer_norm_eps=1e-12,
max_position_embeddings=512,
model_type='bert',
num_attention_heads=12,
num_hidden_layers=12,
pad_token_id=0,
add_type_embeddings=False,
vocab_size=30524,
encoder_width=768,
add_cross_attention=True,
nlvr=True),
add_pooling_layer=False),
)
# optimizer
optimizer = dict(type='AdamW', lr=2e-5, weight_decay=0.05)
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
param_scheduler = [
dict(
type='CosineAnnealingLR',
by_epoch=True,
begin=0,
end=10,
)
]
# runtime settings
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=10)
val_cfg = dict()
test_cfg = dict()
default_hooks = dict(logger=dict(interval=1))