-
Notifications
You must be signed in to change notification settings - Fork 0
/
modules.py
258 lines (207 loc) · 5.76 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
"""
This module implements various modules of the network.
You should fill in code into indicated sections.
"""
import numpy as np
class LinearModule(object):
"""
Linear module. Applies a linear transformation to the input data.
"""
def __init__(self, in_features, out_features):
"""
Initializes the parameters of the module.
Args:
in_features: size of each input sample
out_features: size of each output sample
TODO:
Initialize weights self.params['weight'] using normal distribution with mean = 0 and
std = 0.0001. Initialize biases self.params['bias'] with 0.
Also, initialize gradients with zeros.
"""
########################
# PUT YOUR CODE HERE #
#######################
self.params = {'weight': None, 'bias': None}
self.grads = {'weight': None, 'bias': None}
raise NotImplementedError
########################
# END OF YOUR CODE #
#######################
def forward(self, x):
"""
Forward pass.
Args:
x: input to the module
Returns:
out: output of the module
TODO:
Implement forward pass of the module.
Hint: You can store intermediate variables inside the object. They can be used in backward pass computation. #
"""
########################
# PUT YOUR CODE HERE #
#######################
raise NotImplementedError
########################
# END OF YOUR CODE #
#######################
return out
def backward(self, dout):
"""
Backward pass.
Args:
dout: gradients of the previous module
Returns:
dx: gradients with respect to the input of the module
TODO:
Implement backward pass of the module. Store gradient of the loss with respect to
layer parameters in self.grads['weight'] and self.grads['bias'].
"""
########################
# PUT YOUR CODE HERE #
#######################
raise NotImplementedError
########################
# END OF YOUR CODE #
#######################
return dx
class LeakyReLUModule(object):
"""
Leaky ReLU activation module.
"""
def __init__(self, neg_slope):
"""
Initializes the parameters of the module.
Args:
neg_slope: negative slope parameter.
TODO:
Initialize the module.
"""
########################
# PUT YOUR CODE HERE #
#######################
raise NotImplementedError
########################
# END OF YOUR CODE #
#######################
def forward(self, x):
"""
Forward pass.
Args:
x: input to the module
Returns:
out: output of the module
TODO:
Implement forward pass of the module.
Hint: You can store intermediate variables inside the object. They can be used in backward pass computation. #
"""
########################
# PUT YOUR CODE HERE #
#######################
raise NotImplementedError
########################
# END OF YOUR CODE #
#######################
return out
def backward(self, dout):
"""
Backward pass.
Args:
dout: gradients of the previous module
Returns:
dx: gradients with respect to the input of the module
TODO:
Implement backward pass of the module.
"""
########################
# PUT YOUR CODE HERE #
#######################
raise NotImplementedError
########################
# END OF YOUR CODE #
#######################
return dx
class SoftMaxModule(object):
"""
Softmax activation module.
"""
def forward(self, x):
"""
Forward pass.
Args:
x: input to the module
Returns:
out: output of the module
TODO:
Implement forward pass of the module.
To stabilize computation you should use the so-called Max Trick - https://timvieira.github.io/blog/post/2014/02/11/exp-normalize-trick/
Hint: You can store intermediate variables inside the object. They can be used in backward pass computation.
"""
########################
# PUT YOUR CODE HERE #
#######################
raise NotImplementedError
########################
# END OF YOUR CODE #
#######################
return out
def backward(self, dout):
"""
Backward pass.
Args:
dout: gradients of the previous modul
Returns:
dx: gradients with respect to the input of the module
TODO:
Implement backward pass of the module.
"""
########################
# PUT YOUR CODE HERE #
#######################
raise NotImplementedError
#######################
# END OF YOUR CODE #
#######################
return dx
class CrossEntropyModule(object):
"""
Cross entropy loss module.
"""
def forward(self, x, y):
"""
Forward pass.
Args:
x: input to the module
y: labels of the input
Returns:
out: cross entropy loss
TODO:
Implement forward pass of the module.
"""
########################
# PUT YOUR CODE HERE #
#######################
raise NotImplementedError
########################
# END OF YOUR CODE #
#######################
return out
def backward(self, x, y):
"""
Backward pass.
Args:
x: input to the module
y: labels of the input
Returns:
dx: gradient of the loss with the respect to the input x.
TODO:
Implement backward pass of the module.
"""
########################
# PUT YOUR CODE HERE #
#######################
raise NotImplementedError
########################
# END OF YOUR CODE #
#######################
return dx