forked from RoyiRa/Linguistic-Binding-in-Diffusion-Models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdvmp.py
157 lines (123 loc) · 5.21 KB
/
dvmp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import random
import pandas as pd
import spacy
import argparse
nlp = spacy.load('en_core_web_trf')
def get_article(word):
if word[0] in "aeiou":
return "an"
else:
return "a"
def generate_phrase(items, modifiers, colors, item_type):
# randomly choose num modifiers 0,1,2
if item_type == 'fruit':
num_modifiers = random.choice([0,1])
else:
num_modifiers = random.choice([0, 1, 2])
# randomly choose num_modifiers animal_modifiers
sampled_modifiers = random.sample(modifiers, num_modifiers)
# randomly choose if to add color (30% chance)
add_color = random.choice([True, False, False])
if add_color:
color = random.choice(colors)
sampled_modifiers = [color] + sampled_modifiers
# if no modifiers, try again.
if len(sampled_modifiers) == 0:
return generate_phrase(items, modifiers, colors, item_type)
article = get_article(sampled_modifiers[0])
final_modifiers = " ".join(sampled_modifiers)
item = random.choice(items)
return f"{article} {final_modifiers} {item}", len(sampled_modifiers)
def generate_prompt(num_phrases):
objects = [
"backpack", "crown", "suitcase", "chair", "balloon", "bow",
"car", "bowl", "bench", "clock", "camera", "umbrella", "guitar", "shoe", "hat",
"surfboard", "skateboard", "bicycle"
]
fruit = ["apple", "tomato", "banana", "strawberry"]
animals = [
"cat", "dog", "bird", "bear", "lion", "horse", "elephant", "monkey", "frog",
"turtle", "rabbit", "mouse", "panda", "zebra", "gorilla", "penguin"
]
colors = [
"red", "orange", "yellow", "green", "blue", "purple", "pink", "brown", "gray", "black",
"white", "beige", "teal"]
animal_modifiers = ["furry", "baby", "spotted", "sleepy"]
object_modifiers = ["modern", "spotted", "wooden", "metal", "curved", "spiky", "checkered"]
fruit_modifiers = ["sliced", "skewered"]
phrases = []
num_modifiers = 0
while len(phrases) < num_phrases:
# randomly choose between animal, object, and fruit
choice = random.choice([0, 1, 2])
if choice == 0:
phrase, num_phrase_modifiers = generate_phrase(animals, animal_modifiers, colors, 'animal')
elif choice == 1:
phrase, num_phrase_modifiers = generate_phrase(fruit, fruit_modifiers, colors, 'fruit')
else:
phrase, num_phrase_modifiers = generate_phrase(objects, object_modifiers, colors, 'object')
if phrase not in phrases:
num_modifiers += num_phrase_modifiers
phrases.append(phrase)
prompt = " and ".join(phrases)
return prompt, num_modifiers
def extract_attribution_indices(prompt, parser):
doc = parser(prompt)
subtrees = []
modifiers = ['amod', 'nmod', 'compound', 'npadvmod', 'advmod', 'acomp']
for w in doc:
if w.pos_ not in ['NOUN', 'PROPN'] or w.dep_ in modifiers:
continue
subtree = []
stack = []
for child in w.children:
if child.dep_ in modifiers:
subtree.append(child)
stack.extend(child.children)
while stack:
node = stack.pop()
if node.dep_ in modifiers or node.dep_ == 'conj':
subtree.append(node)
stack.extend(node.children)
if subtree:
subtree.append(w)
subtrees.append(subtree)
return subtrees
def segment_text(text: str):
segments = []
doc = nlp(text)
subtrees = extract_attribution_indices(doc, nlp)
if subtrees:
for subtree in subtrees:
segments.append(" ".join([t.text for t in subtree]))
return segments
def dvmp_dataset_creation(num_samples, dest_path, max_num_phrases=3):
prompts = []
prompts_num_modifiers_prompt = []
prompts_num_phrases_per_prompt = []
while len(prompts) < num_samples:
num_phrases = random.choice([i for i in range(1, max_num_phrases + 1)])
prompt, num_modifiers = generate_prompt(num_phrases)
if prompt not in prompts:
prompts_num_phrases_per_prompt.append(num_phrases)
prompts_num_modifiers_prompt.append(num_modifiers)
segments = segment_text(prompt)
num_mods = sum([len(s.split(" ")[:-1]) for s in segments])
if num_mods != num_modifiers:
print(prompt, num_mods, num_modifiers)
prompts.append(prompt)
subjects = []
# add subjects to each prompt
docs = nlp.pipe(prompts)
for doc in docs:
subjects.append([token.text for token in doc if token.pos_ == 'NOUN'])
# convert to df and save
df = pd.DataFrame({'prompt': prompts, 'num_modifiers': prompts_num_modifiers_prompt, 'num_phrases': prompts_num_phrases_per_prompt, 'subjects': subjects})
if dest_path:
df.to_csv(dest_path, index=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Create a DVMP dataset.')
parser.add_argument('--num_samples', type=int, default=200, help='Number of samples to generate.')
parser.add_argument('--dest_path', type=str, default='destination.csv', help='Destination CSV file path.')
args = parser.parse_args()
dvmp_dataset_creation(args.num_samples, args.dest_path)