forked from chhylp123/hifiasm
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Overlaps.h
1157 lines (977 loc) · 35.6 KB
/
Overlaps.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef __OVERLAPS__
#define __OVERLAPS__
#include <stdio.h>
#include <stdint.h>
#include "kvec.h"
#include "kdq.h"
///#define MIN_OVERLAP_LEN 2000
///#define MIN_OVERLAP_LEN 500
///#define MIN_OVERLAP_LEN 50
///#define MIN_OVERLAP_LEN 50
///#define MIN_OVERLAP_COVERAGE 1
///#define MIN_OVERLAP_COVERAGE 0
///#define MAX_HANG_LEN 1000
///#define MAX_HANG_PRE 0.8
///#define GAP_FUZZ 1000
///#define MAX_SHORT_TIPS 3
///#define MAX_BUBBLE_DIST 10000000
#define SMALL_BUBBLE_SIZE (uint32_t)-1
//#define SMALL_BUBBLE_SIZE 1000
#define PRIMARY_LABLE 0
#define ALTER_LABLE 1
#define HAP_LABLE 2
#define TRIO_THRES 0.9
#define DOUBLE_CHECK_THRES 0.1
#define FINAL_DOUBLE_CHECK_THRES 0.2
#define CHIMERIC_TRIM_THRES 4
// #define PRIMARY_LABLE 1
// #define ALTER_LABLE 2
// #define HAP_LABLE 4
#define Get_qn(RECORD) ((uint32_t)((RECORD).qns>>32))
#define Get_qs(RECORD) ((uint32_t)((RECORD).qns))
#define Get_qe(RECORD) ((RECORD).qe)
#define Get_tn(RECORD) ((RECORD).tn)
#define Get_ts(RECORD) ((RECORD).ts)
#define Get_te(RECORD) ((RECORD).te)
#define LONG_TIPS 0
#define TWO_INPUT 1
#define TWO_OUTPUT 2
#define MUL_INPUT 3
#define MUL_OUTPUT 4
#define END_TIPS 5
#define LONG_TIPS_UNDER_MAX_EXT 6
#define LOOP 7
#define TRIM 10
#define CUT 11
#define CUT_DIF_HAP 12
///query is the read itself
typedef struct {
uint64_t qns;
uint32_t qe, tn, ts, te;
uint32_t ml:31, rev:1; // ml: whether overlap is strong(1) or weak(0)
uint32_t bl:31, del:1;
uint8_t el; // whether overlap is exact (1) or inexact (0)
uint8_t no_l_indel; // "no large indels"
} ma_hit_t;
typedef struct {
ma_hit_t* buffer;
uint32_t size; // buffer's size
uint32_t length; // buffer's actual length
uint8_t is_fully_corrected;
uint8_t is_abnormal;
// uint8_t *was_symm;
// NOTE for the following:
// This is for hamt routines only. Hifiasm might maintain sorted buffers,
// remember that they will not be aware of these.
// 0 if buffer is empty or not sorted; INT is the index that everything before this slot is sorted .
// e.g. [0,1,2,3,4,2,3] will get marked by 4
// This is introduced to compensate multithreading with insertions
uint32_t buffer_sorted_by_tn;
uint32_t buffer_sorted_by_qns;
} ma_hit_t_alloc;
void init_ma_hit_t_alloc(ma_hit_t_alloc* x);
void clear_ma_hit_t_alloc(ma_hit_t_alloc* x);
void resize_ma_hit_t_alloc(ma_hit_t_alloc* x, uint32_t size);
void destory_ma_hit_t_alloc(ma_hit_t_alloc* x, long long total_reads); // hamt note: the original has memory leak? (x is an array of ma_hit_t_alloc, not one ma_hit_t_alloc, but the original implementation called one free() on the pointer.)
void add_ma_hit_t_alloc(ma_hit_t_alloc* x, ma_hit_t* element);
void ma_hit_sort_tn(ma_hit_t *a, long long n);
void ma_hit_sort_qns(ma_hit_t *a, long long n);
int load_all_data_from_disk(ma_hit_t_alloc **sources, ma_hit_t_alloc **reverse_sources,
char* output_file_name);
typedef struct {
uint32_t s:31, del:1, e;
uint8_t c;
} ma_sub_t;
void ma_hit_sub(int min_dp, ma_hit_t_alloc* sources, long long n_read, uint64_t* readLen,
long long mini_overlap_length, ma_sub_t** coverage_cut);
void ma_hit_cut(ma_hit_t_alloc* sources, long long n_read, uint64_t* readLen,
long long mini_overlap_length, ma_sub_t** coverage_cut);
void ma_hit_flt(ma_hit_t_alloc* sources, long long n_read, const ma_sub_t *coverage_cut,
int max_hang, int min_ovlp);
long long get_specific_overlap(ma_hit_t_alloc* x, uint32_t qn, uint32_t tn);
typedef struct {
uint64_t ul;
uint32_t v;
uint32_t ol:31, del:1;
uint8_t strong;
uint8_t el;
uint8_t no_l_indel; // whether the edge has a large indel
uint8_t is_bridge; // hamt experimental
} asg_arc_t;
typedef struct {
uint32_t len:31, circ:1; // len: length of the unitig; circ: circular if non-zero
uint32_t start, end; // start: starting vertex in the string graph; end: ending vertex
uint32_t m, n; // number of reads
uint64_t *a; // list of reads; upper 32 bits represent readID (with direction); lower 32 is arc length not overlap length
char *s; // unitig sequence is not null
uint8_t c; // hamt: like seq's .c
int subg_label; // hamt: subgraph ID (current)
} ma_utg_t;
typedef struct {
uint32_t len:31, del:1;
uint8_t c;
} asg_seq_t;
typedef struct {
uint32_t m_arc, n_arc:31, is_srt:1;
asg_arc_t *arc;
uint32_t m_seq, n_seq:31, is_symm:1;
uint32_t r_seq;
asg_seq_t *seq;
uint64_t *idx;
uint8_t* seq_vis; // hamt note: size is g->n_seq*2, always calloc-ed. hamt recycles this for primary/alt labelling
uint32_t n_F_seq;
ma_utg_t* F_seq;
//hamt
} asg_t;
asg_t *asg_init(void);
void asg_destroy(asg_t *g);
void asg_arc_sort(asg_t *g);
void asg_seq_set(asg_t *g, int sid, int len, int del);
void asg_arc_index(asg_t *g);
void asg_cleanup(asg_t *g);
void asg_symm(asg_t *g);
void print_gfa(asg_t *g);
typedef struct { size_t n, m; uint64_t *a; } asg64_v;
typedef struct { size_t n, m; uint32_t *a; } asg32_v;
typedef struct { size_t n, m; ma_utg_t *a; } ma_utg_v;
typedef struct {
ma_utg_v u; // an array of ma_utg_t (each one is a unitig)
asg_t *g;
int *dir; // hamt (deprecated)
int *utg_coverage; // hamt
} ma_ug_t; // initialized by calloc
typedef struct {
uint32_t utg:31, ori:1, start, len;
} utg_intv_t;
#define MA_HT_INT (-1)
#define MA_HT_QCONT (-2)
#define MA_HT_TCONT (-3)
#define MA_HT_SHORT_OVLP (-4)
///in default, max_hang = 1000, int_frac = 0.8, min_ovlp = 50
static inline int ma_hit2arc(const ma_hit_t *h, int ql, int tl, int max_hang, float int_frac, int min_ovlp, asg_arc_t *p)
{
int32_t tl5, tl3, ext5, ext3, qs = (int32_t)h->qns;
uint32_t u, v, l; // u: query end; v: target end; l: length from u to v
///if query and target are in different strand
if (h->rev) tl5 = tl - h->te, tl3 = h->ts; // tl5: 5'-end overhang (on the query strand); tl3: similar
else tl5 = h->ts, tl3 = tl - h->te;
///ext5 and ext3 is the hang on left side and right side, respectively
ext5 = qs < tl5? qs : tl5;
ext3 = ql - (int)h->qe < tl3? ql - (int)h->qe : tl3;
/**
if (ext5 > max_hang || ext3 > max_hang || h->qe - qs < (h->qe - qs + ext5 + ext3) * int_frac)
return MA_HT_INT;
**/
///ext3 and ext5 should be always 0
if (ext5 > max_hang || ext3 > max_hang
|| h->qe - qs < (h->qe - qs + ext5 + ext3) * int_frac
|| h->te - h->ts < (h->te - h->ts + ext5 + ext3) * int_frac)
{
return MA_HT_INT;
}
/**
********************************query-to-target overlap****************************
case 1: u = 0, rev = 0 in the view of target: direction is 1
query: CCCCCCCCTAATTAAAAT target: TAATTAAAATGGGGGG (use ex-target as query)
|||||||||| <---> ||||||||||
target: TAATTAAAATGGGGGG query: CCCCCCCCTAATTAAAAT (use ex-query as target)
case 2: u = 0, rev = 1 in the view of target: direction is 0
query: CCCCCCCCTAATTAAAAT target: CCCCCCATTTTAATTA (use ex-target as query)
|||||||||| <---> ||||||||||
target: TAATTAAAATGGGGGG query: ATTTTAATTAGGGGGGGG (use ex-query as target)
********************************query-to-target overlap****************************
********************************target-to-query overlap****************************
case 3: u = 1, rev = 0 in the view of target: direction is 0
query: AAATAATATCCCCCCGCG target: GGGCCGGCAAATAATAT (use ex-target as query)
||||||||| <---> |||||||||
target: GGGCCGGCAAATAATAT query: AAATAATATCCCCCCGCG (use ex-query as target)
case 4: u = 1, rev = 1 in the view of target: direction is 1
query: AAATAATATCCCCCCGCG target: ATATTATTTGCCGGCCC (use ex-target as query)
||||||||| <---> |||||||||
target: GGGCCGGCAAATAATAT query: CGCGGGGGATATTATTT (use ex-query as target)
********************************target-to-query overlap****************************
**/
if (qs <= tl5 && ql - (int)h->qe <= tl3) return MA_HT_QCONT; // query contained in target
else if (qs >= tl5 && ql - (int)h->qe >= tl3) return MA_HT_TCONT; // target contained in query
else if (qs > tl5) u = 0, v = !!h->rev, l = qs - tl5; ///u = 0 means query-to-target overlap, l is the length of node in string graph (not the overlap length)
else u = 1, v = !h->rev, l = (ql - h->qe) - tl3; ///u = 1 means target-to-query overlaps, l is the length of node in string graph (not the overlap length)
if ((int)h->qe - qs + ext5 + ext3 < min_ovlp || (int)h->te - (int)h->ts + ext5 + ext3 < min_ovlp) return MA_HT_SHORT_OVLP; // short overlap
///u = 0 / 1 means query-to-target / target-to-query overlaps,
///l is the length of node in string graph (not the overlap length between two reads)
u |= h->qns>>32<<1, v |= h->tn<<1;
/**
p->ul: |____________31__________|__________1___________|______________32_____________|
qn direction of overlap length of this node (not overlap length)
(in the view of query)
p->v : |___________31___________|__________1___________|
tn reverse direction of overlap
(in the view of target)
p->ol: overlap length
**/
p->ul = (uint64_t)u<<32 | l, p->v = v, p->ol = ql - l, p->del = 0;
///l is the length of node in string graph (not the overlap length)
p->strong = h->ml;
p->el = h->el;
p->no_l_indel = h->no_l_indel;
return l;
}
#define asg_arc_len(arc) ((uint32_t)(arc).ul)
#define asg_arc_n(g, v) ((uint32_t)(g)->idx[(v)])
#define asg_arc_a(g, v) (&(g)->arc[(g)->idx[(v)]>>32])
static inline uint32_t asg_get_arc(asg_t *g, uint32_t v, uint32_t w, asg_arc_t* t)
{
uint32_t i, nv = asg_arc_n(g, v);
asg_arc_t *av = asg_arc_a(g, v);
for (i = 0; i < nv; ++i)
{
if(av[i].del) continue;
if(av[i].v == w)
{
(*t) = av[i];
return 1;
}
}
return 0;
}
// append an arc
static inline asg_arc_t *asg_arc_pushp(asg_t *g)
{
if (g->n_arc == g->m_arc) {
g->m_arc = g->m_arc? g->m_arc<<1 : 16;
g->arc = (asg_arc_t*)realloc(g->arc, g->m_arc * sizeof(asg_arc_t));
}
return &g->arc[g->n_arc++];
}
// set asg_arc_t::del for v->w
static inline void asg_arc_del(asg_t *g, uint32_t v, uint32_t w, int del)
{
uint32_t i, nv = asg_arc_n(g, v);
asg_arc_t *av = asg_arc_a(g, v);
for (i = 0; i < nv; ++i)
if (av[i].v == w) av[i].del = !!del;
}
// set asg_arc_t::del and asg_seq_t::del to 1 for sequence s and all its associated arcs
static inline void asg_seq_del(asg_t *g, uint32_t s)
{
uint32_t k;
g->seq[s].del = 1;
for (k = 0; k < 2; ++k) {
uint32_t i, v = s<<1 | k;
uint32_t nv = asg_arc_n(g, v);
asg_arc_t *av = asg_arc_a(g, v);
for (i = 0; i < nv; ++i) {
av[i].del = 1;
asg_arc_del(g, av[i].v^1, v^1, 1);
}
}
}
static inline void asg_seq_drop(asg_t *g, uint32_t s)
{
///s is not at primary
if(g->seq[s].c == ALTER_LABLE)
{
uint32_t k;
for (k = 0; k < 2; ++k)
{
///two directions of this node
uint32_t i, v = s<<1 | k;
uint32_t nv = asg_arc_n(g, v);
asg_arc_t *av = asg_arc_a(g, v);
for (i = 0; i < nv; ++i)
{
if(av[i].del) continue;
///if output node is at primary
/****************************may have hap bugs********************************/
///if(g->seq[(av[i].v>>1)].c == PRIMARY_LABLE)
///if(g->seq[(av[i].v>>1)].c == PRIMARY_LABLE || g->seq[(av[i].v>>1)].c == HAP_LABLE)
if(g->seq[(av[i].v>>1)].c != ALTER_LABLE)
{/****************************may have hap bugs********************************/
av[i].del = 1;
asg_arc_del(g, av[i].v^1, v^1, 1);
}
}
}
}
}
/******************
* Bubble popping *
******************/
typedef struct {
uint32_t p; // the optimal parent vertex
uint32_t d; // the shortest distance from the initial vertex
uint32_t c; // max count of positive reads
uint32_t m; // max count of negative reads
uint32_t np; // max count of non-positive reads
uint32_t nc; // max count of reads, no matter positive or negative
uint32_t r:31, s:1; // r: the number of remaining incoming arc; s: state
//s: state, s=0, this edge has not been visited, otherwise, s=1
} binfo_t;
typedef struct {
///all information for each node
binfo_t *a;
kvec_t(uint32_t) S; // set of vertices without parents, nodes with all incoming edges visited
kvec_t(uint32_t) T; // set of tips
kvec_t(uint32_t) b; // visited vertices
kvec_t(uint32_t) e; // visited edges/arcs
} buf_t;
typedef struct {
kvec_t(uint64_t) Nodes;
kvec_t(uint64_t) Edges;
uint32_t pre_n_seq, seqID;
} C_graph;
typedef struct {
kvec_t(uint8_t) a;
uint32_t i;
} kvec_t_u8_warp;
typedef struct {
kvec_t(uint32_t) a;
uint32_t i;
} kvec_t_u32_warp;
typedef struct {
kvec_t(int32_t) a;
uint32_t i;
} kvec_t_i32_warp;
typedef struct {
kvec_t(uint64_t) a;
uint64_t i;
} kvec_t_u64_warp;
typedef struct {
kvec_t(asg_arc_t) a;
uint64_t i;
}kvec_asg_arc_t_warp;
void sort_kvec_t_u64_warp(kvec_t_u64_warp* u_vecs, uint32_t is_descend);
typedef struct {
uint32_t q_pos;
uint32_t t_pos;
uint32_t t_id;
uint32_t is_color;
} Hap_Align;
typedef struct {
kvec_t(Hap_Align) x;
uint64_t i;
} Hap_Align_warp;
typedef struct {
buf_t* b_0;
uint32_t untigI;
uint32_t readI;
uint32_t offset;
} rIdContig;
// count the number of outgoing arcs, including reduced arcs
static inline int count_out_with_del(const asg_t *g, uint32_t v)
{
uint32_t nv = asg_arc_n(g, v);
return nv;
}
// count the number of outgoing arcs, including reduced arcs
static inline int count_out_without_del(const asg_t *g, uint32_t v)
{
uint32_t i, n, nv = asg_arc_n(g, v);
const asg_arc_t *av = asg_arc_a(g, v);
for (i = n = 0; i < nv; ++i)
if (!av[i].del) ++n;
return n;
}
void build_string_graph_without_clean(
int min_dp, ma_hit_t_alloc* sources, ma_hit_t_alloc* reverse_sources,
long long n_read, uint64_t* readLen, long long mini_overlap_length,
long long max_hang_length, long long clean_round, long long gap_fuzz,
float min_ovlp_drop_ratio, float max_ovlp_drop_ratio, char* output_file_name,
long long bubble_dist, int read_graph, int write);
void debug_info_of_specfic_read(char* name, ma_hit_t_alloc* sources,
ma_hit_t_alloc* reverse_sources, int id, char* command);
void collect_abnormal_edges(ma_hit_t_alloc* paf, ma_hit_t_alloc* rev_paf, long long readNum);
void add_overlaps(ma_hit_t_alloc* source_paf, ma_hit_t_alloc* dest_paf, uint64_t* source_index, long long listLen);
void remove_overlaps(ma_hit_t_alloc* source_paf, uint64_t* source_index, long long listLen);
void add_overlaps_from_different_sources(ma_hit_t_alloc* source_paf_list, ma_hit_t_alloc* dest_paf,
uint64_t* source_index, long long listLen);
#define EvaluateLen(U, id) ((U).a[(id)].start)
#define IsMerge(U, id) ((U).a[(id)].end)
#define kv_reuse(v, rn, rm, r) ((v).n = (rn), (v).m = (rm), (v).a = (r))
#define long_tip(U, id, threshold) ((EvaluateLen((U), (id))>=(threshold))&&(!((U).a[(id)].circ)))
///there are threee cases:
///1. if this untig is too long (>maxShortUntig), it must be not short untig/must be a long untig
///2. if this untig is long (>minLongUntig && EvaluateLen(ug->u, av[i].v>>1) > (EvaluateLen(ug->u, v>>1)*l_untig_rate)), it might be a long tip
#define check_long_tip(U, id, minLongUntig, maxShortUntig, ShortUntigRate, mainLen) \
((!((U).a[(id)].circ)) \
&& \
((EvaluateLen((U), (id)) > (maxShortUntig))\
||\
((long_tip((U), (id), (minLongUntig)))\
&&\
(EvaluateLen((U), (id)) > (ShortUntigRate)*(mainLen)))))
#define Get_vis(visit, v, d) (((visit)[(v)>>1])&(((((v)<<(d))&1)+1)))
#define Set_vis(visit, v, d) (((visit)[(v)>>1])|=(((((v)<<(d))&1)+1)))
typedef struct {
uint64_t len;
uint32_t* index;
} R_to_U;
void init_R_to_U(R_to_U* x, uint64_t len);
void destory_R_to_U(R_to_U* x);
void set_R_to_U(R_to_U* x, uint32_t rID, uint32_t uID, uint32_t is_Unitig);
void get_R_to_U(R_to_U* x, uint32_t rID, uint32_t* uID, uint32_t* is_Unitig);
void transfor_R_to_U(R_to_U* x);
void debug_utg_graph(ma_ug_t *ug, asg_t* read_g, int require_equal_nv, int test_tangle);
void clean_untig_graph(ma_ug_t *ug, asg_t *read_g, ma_hit_t_alloc* reverse_sources,
long long bubble_dist, long long tipsLen, float tip_drop_ratio, long long stops_threshold,
R_to_U* ruIndex, buf_t* b_0, uint8_t* visit, float density, uint32_t miniHapLen,
uint32_t miniBiGraph, float chimeric_rate, int is_final_clean);
int asg_pop_bubble_primary(asg_t *g, int max_dist);
long long asg_arc_del_simple_circle_untig(ma_hit_t_alloc* sources, ma_sub_t* coverage_cut, asg_t *g, long long circleLen, int is_drop);
typedef struct {
asg_t* g;
asg_arc_t *av;
uint32_t nv;
uint32_t av_i;
asg_arc_t* new_edges;
uint32_t new_edges_n;
uint32_t new_edges_i;
} Edge_iter;
void init_Edge_iter(asg_t* g, uint32_t v, asg_arc_t* new_edges, uint32_t new_edges_n, Edge_iter* x);
int get_arc_t(Edge_iter* x, asg_arc_t* get);
int asg_pop_bubble_primary_trio(ma_ug_t *ug, int max_dist, uint32_t positive_flag, uint32_t negative_flag);
inline int get_real_length(asg_t *g, uint32_t v, uint32_t* v_s)
{
// FUNC
// get the number of not-yet-deleted targets.
// More expensive than `asg_arc_n` which simply checks index and
// tells the number of targets (set by the time of indexing).
// (store them in v_s (an array buffer) if not null pointer)
uint32_t i, kv = 0;
for (i = 0, kv = 0; i < asg_arc_n(g, v); i++)
{
if(!asg_arc_a(g, v)[i].del)
{
if(v_s) v_s[kv] = asg_arc_a(g, v)[i].v;
kv++;
}
}
return kv;
}
inline uint32_t check_tip(asg_t *sg, uint32_t begNode, uint32_t* endNode, buf_t* b, uint32_t max_ext)
{
///cut tip of length <= max_ext
uint32_t v = begNode, w;
uint32_t kv;
uint32_t eLen = 0;
(*endNode) = (uint32_t)-1;
b->b.n = 0;
while (1)
{
kv = get_real_length(sg, v, NULL);
(*endNode) = v;
eLen++;
if(b) kv_push(uint32_t, b->b, v);
if(kv == 0) return END_TIPS;
if(kv > 1) return MUL_OUTPUT;
///if(eLen > max_ext) return LONG_TIPS;
///kv must be 1 here
kv = get_real_length(sg, v, &w);
///here this value must be >= 1
if(get_real_length(sg, w^1, NULL)!=1) return MUL_INPUT;
v = w;
if(v == begNode) return LOOP;
if(eLen >= max_ext) return LONG_TIPS;
}
}
inline uint32_t get_unitig_back(asg_t *sg, ma_ug_t *ug, uint32_t begNode, uint32_t* endNode,
long long* nodeLen, long long* baseLen, buf_t* b)
{
ma_utg_v* u = NULL;
uint32_t v = begNode, w, k;
uint32_t kv;
(*nodeLen) = (*baseLen) = 0;
(*endNode) = (uint32_t)-1;
if(ug!=NULL) u = &(ug->u);
while (1)
{
kv = get_real_length(sg, v, NULL);
(*endNode) = v;
if(u == NULL)
{
(*nodeLen)++;
}
else
{
(*nodeLen) += EvaluateLen((*u), v>>1);
}
if(b) kv_push(uint32_t, b->b, v);
///means reach the end of a unitig
if(kv!=1) (*baseLen) += sg->seq[v>>1].len;
if(kv==0) return END_TIPS;
if(kv>1) return MUL_OUTPUT;
///kv must be 1 here
kv = get_real_length(sg, v, &w);
///means reach the end of a unitig
if(get_real_length(sg, w^1, NULL)!=1)
{
(*baseLen) += sg->seq[v>>1].len;
return MUL_INPUT;
}
for (k = 0; k < asg_arc_n(sg, v); k++)
{
if(asg_arc_a(sg, v)[k].del) continue;
///here is just one undeleted edge
(*baseLen) += asg_arc_len(asg_arc_a(sg, v)[k]);
break;
}
v = w;
if(v == begNode) return LOOP;
}
}
inline uint32_t get_unitig(asg_t *sg, ma_ug_t *ug, uint32_t begNode, uint32_t* endNode,
long long* nodeLen, long long* baseLen, long long* max_stop_nodeLen, long long* max_stop_baseLen,
uint32_t stops_threshold, buf_t* b)
{
ma_utg_v* u = NULL;
uint32_t v = begNode, w, k;
uint32_t kv, return_flag, n_stops = 0;
long long pre_baseLen = 0, pre_nodeLen = 0;
long long cur_baseLen = 0, cur_nodeLen = 0;
(*max_stop_nodeLen) = (*max_stop_baseLen) = (*nodeLen) = (*baseLen) = 0;
(*endNode) = (uint32_t)-1;
if(ug!=NULL) u = &(ug->u);
while (1)
{
kv = get_real_length(sg, v, NULL);
(*endNode) = v;
if(u == NULL) // don't have ug
{
(*nodeLen)++;
}
else // have ug, increment by ug->u.a[uid].start
{
(*nodeLen) += EvaluateLen((*u), v>>1);
}
if(b) kv_push(uint32_t, b->b, v);
///means reach the end of a unitig
if(kv!=1) (*baseLen) += sg->seq[v>>1].len;
if(kv==0)
{
return_flag = END_TIPS;
break;
///return END_TIPS;
}
if(kv>1)
{
return_flag = MUL_OUTPUT;
break;
///return MUL_OUTPUT;
}
///kv must be 1 here
kv = get_real_length(sg, v, &w); // using &w is safe since kv is 1
///means reach the end of a unitig
if(get_real_length(sg, w^1, NULL)!=1) // next node has more than 1 predecessor
{
n_stops++;
if(n_stops >= stops_threshold)
{
(*baseLen) += sg->seq[v>>1].len;
return_flag = MUL_INPUT;
break;
///return MUL_INPUT;
}
else
{
for (k = 0; k < asg_arc_n(sg, v); k++)
{
if(asg_arc_a(sg, v)[k].del) continue;
///here is just one undeleted edge
(*baseLen) += asg_arc_len(asg_arc_a(sg, v)[k]);
break;
}
}
cur_baseLen = (*baseLen) - pre_baseLen;
pre_baseLen = (*baseLen);
if(cur_baseLen > (*max_stop_baseLen))
{
(*max_stop_baseLen) = cur_baseLen;
}
cur_nodeLen = (*nodeLen) - pre_nodeLen;
pre_nodeLen = (*nodeLen);
if(cur_nodeLen > (*max_stop_nodeLen))
{
(*max_stop_nodeLen) = cur_nodeLen;
}
}
else
{
for (k = 0; k < asg_arc_n(sg, v); k++)
{
if(asg_arc_a(sg, v)[k].del) continue;
///here is just one undeleted edge
(*baseLen) += asg_arc_len(asg_arc_a(sg, v)[k]);
break;
}
}
v = w;
if(v == begNode)
{
return_flag = LOOP;
break;
///return LOOP;
}
}
cur_baseLen = (*baseLen) - pre_baseLen;
pre_baseLen = (*baseLen);
if(cur_baseLen > (*max_stop_baseLen))
{
(*max_stop_baseLen) = cur_baseLen;
}
cur_nodeLen = (*nodeLen) - pre_nodeLen;
pre_nodeLen = (*nodeLen);
if(cur_nodeLen > (*max_stop_nodeLen))
{
(*max_stop_nodeLen) = cur_nodeLen;
}
return return_flag;
}
#define UNAVAILABLE (uint32_t)-1
#define PLOID 0
#define NON_PLOID 1
#define DIFF_HAP_RATE 0.75
#define TRIO_DROP_THRES 0.9
#define TRIO_DROP_LENGTH_THRES 0.8
#define MAX_STOP_RATE 0.6
#define TANGLE_MISSED_THRES 0.6
///if ug == NULL, nsg should be equal to read_sg
inline uint32_t check_different_haps(asg_t *nsg, ma_ug_t *ug, asg_t *read_sg,
uint32_t v_0, uint32_t v_1, ma_hit_t_alloc* reverse_sources, buf_t* b_0, buf_t* b_1,
R_to_U* ruIndex, uint32_t min_edge_length, uint32_t stops_threshold)
{
uint32_t vEnd, qn, tn, j, is_Unitig, uId;
long long ELen_0, ELen_1, tmp, max_stop_nodeLen, max_stop_baseLen;
b_0->b.n = b_1->b.n = 0;
if(get_unitig(nsg, ug, v_0, &vEnd, &ELen_0, &tmp, &max_stop_nodeLen, &max_stop_baseLen,
stops_threshold, b_0) == LOOP)
{
return UNAVAILABLE;
}
if(get_unitig(nsg, ug, v_1, &vEnd, &ELen_1, &tmp, &max_stop_nodeLen, &max_stop_baseLen,
stops_threshold, b_1) == LOOP)
{
return UNAVAILABLE;
}
if(ELen_0<=min_edge_length || ELen_1<=min_edge_length) return UNAVAILABLE;
rIdContig b_max, b_min;
b_max.b_0 = b_min.b_0 = NULL;
b_max.offset = b_max.readI = b_max.untigI = 0;
b_min.offset = b_min.readI = b_min.untigI = 0;
if(ELen_0<=ELen_1)
{
b_min.b_0 = b_0;
b_max.b_0 = b_1;
}
else
{
b_min.b_0 = b_1;
b_max.b_0 = b_0;
}
uint32_t max_count = 0, min_count = 0;
ma_utg_t *node_min = NULL, *node_max = NULL;
if(ug != NULL)
{
/*****************************label all unitigs****************************************/
for (b_max.untigI = 0; b_max.untigI < b_max.b_0->b.n; b_max.untigI++)
{
node_max = &(ug->u.a[b_max.b_0->b.a[b_max.untigI]>>1]);
///each read
for (b_max.readI = 0; b_max.readI < node_max->n; b_max.readI++)
{
qn = (node_max->a[b_max.readI]>>33);
set_R_to_U(ruIndex, qn, (b_max.b_0->b.a[b_max.untigI]>>1), 1);
}
}
/*****************************label all unitigs****************************************/
///each unitig
for (b_min.untigI = 0; b_min.untigI < b_min.b_0->b.n; b_min.untigI++)
{
node_min = &(ug->u.a[(b_min.b_0->b.a[b_min.untigI]>>1)]);
///each read
for (b_min.readI = 0; b_min.readI < node_min->n; b_min.readI++)
{
qn = node_min->a[b_min.readI]>>33;
/************************BUG: don't forget****************************/
if(reverse_sources[qn].length > 0) min_count++;
///if(reverse_sources[qn].length >= 0) min_count++;
/************************BUG: don't forget****************************/
for (j = 0; j < (long long)reverse_sources[qn].length; j++)
{
tn = Get_tn(reverse_sources[qn].buffer[j]);
if(read_sg->seq[tn].del == 1)
{
get_R_to_U(ruIndex, tn, &tn, &is_Unitig);
if(tn == (uint32_t)-1 || is_Unitig == 1 || read_sg->seq[tn].del == 1) continue;
}
get_R_to_U(ruIndex, tn, &uId, &is_Unitig);
if(uId!=(uint32_t)-1 && is_Unitig == 1)
{
max_count++;
break;
}
}
}
}
/*****************************label all unitigs****************************************/
for (b_max.untigI = 0; b_max.untigI < b_max.b_0->b.n; b_max.untigI++)
{
node_max = &(ug->u.a[b_max.b_0->b.a[b_max.untigI]>>1]);
///each read
for (b_max.readI = 0; b_max.readI < node_max->n; b_max.readI++)
{
qn = (node_max->a[b_max.readI]>>33);
ruIndex->index[qn] = (uint32_t)-1;
}
}
/*****************************label all unitigs****************************************/
}
else
{
/*****************************label all reads****************************************/
for (b_max.untigI = 0; b_max.untigI < b_max.b_0->b.n; b_max.untigI++)
{
qn = (b_max.b_0->b.a[b_max.untigI]>>1);
set_R_to_U(ruIndex, qn, 1, 1);
}
/*****************************label all reads****************************************/
///each read
for (b_min.untigI = 0; b_min.untigI < b_min.b_0->b.n; b_min.untigI++)
{
qn = (b_min.b_0->b.a[b_min.untigI]>>1);
/************************BUG: don't forget****************************/
if(reverse_sources[qn].length > 0) min_count++;
///if(reverse_sources[qn].length >= 0) min_count++;
/************************BUG: don't forget****************************/
for (j = 0; j < (long long)reverse_sources[qn].length; j++)
{
tn = Get_tn(reverse_sources[qn].buffer[j]);
if(nsg->seq[tn].del == 1)
{
get_R_to_U(ruIndex, tn, &tn, &is_Unitig);
if(tn == (uint32_t)-1 || is_Unitig == 1 || nsg->seq[tn].del == 1) continue;
}
get_R_to_U(ruIndex, tn, &uId, &is_Unitig);
if(uId!=(uint32_t)-1 && is_Unitig == 1)
{
max_count++;
break;
}
}
}
/*****************************label all reads****************************************/
for (b_max.untigI = 0; b_max.untigI < b_max.b_0->b.n; b_max.untigI++)
{
qn = (b_max.b_0->b.a[b_max.untigI]>>1);
ruIndex->index[qn] = (uint32_t)-1;
}
/*****************************label all reads****************************************/
}
// if(((v_0==7707) && (v_1==26867))||((v_1==7707) && (v_0==26867)))
// {
// fprintf(stderr, "******\nv_0>>1: %u, v_0&1: %u, ELen_0: %u\n", v_0>>1, v_0&1, (uint32_t)ELen_0);
// fprintf(stderr, "v_1>>1: %u, v_1&1: %u, ELen_1: %u\n", v_1>>1, v_1&1, (uint32_t)ELen_1);
// fprintf(stderr, "min_count: %u, max_count: %u, DIFF_HAP_RATE: %f\n\n",
// min_count, max_count, DIFF_HAP_RATE);
// }
if(min_count == 0) return UNAVAILABLE;
if(max_count > min_count*DIFF_HAP_RATE) return PLOID;
return NON_PLOID;
}
inline uint32_t check_different_haps_naive(asg_t *nsg, ma_ug_t *ug, asg_t *read_sg,
uint32_t v_0, uint32_t v_1, ma_hit_t_alloc* reverse_sources, buf_t* b_0, buf_t* b_1,
R_to_U* ruIndex, uint32_t min_edge_length, uint32_t stops_threshold)
{
uint32_t vEnd, qn, tn, j, is_Unitig;
long long ELen_0, ELen_1, tmp, max_stop_nodeLen, max_stop_baseLen;
b_0->b.n = b_1->b.n = 0;
if(get_unitig(nsg, ug, v_0, &vEnd, &ELen_0, &tmp, &max_stop_nodeLen, &max_stop_baseLen,
stops_threshold, b_0) == LOOP)
{
return UNAVAILABLE;
}
if(get_unitig(nsg, ug, v_1, &vEnd, &ELen_1, &tmp, &max_stop_nodeLen, &max_stop_baseLen,
stops_threshold, b_1) == LOOP)
{
return UNAVAILABLE;
}
if(ELen_0<=min_edge_length || ELen_1<=min_edge_length) return UNAVAILABLE;
rIdContig b_max, b_min;
b_max.b_0 = b_min.b_0 = NULL;
b_max.offset = b_max.readI = b_max.untigI = 0;
b_min.offset = b_min.readI = b_min.untigI = 0;
if(ELen_0<=ELen_1)
{
b_min.b_0 = b_0;
b_max.b_0 = b_1;
}
else
{
b_min.b_0 = b_1;
b_max.b_0 = b_0;
}
uint32_t max_count = 0, min_count = 0;
ma_utg_t *node_min = NULL, *node_max = NULL;
if(ug != NULL)
{
///each unitig
for (b_min.untigI = 0; b_min.untigI < b_min.b_0->b.n; b_min.untigI++)
{
node_min = &(ug->u.a[(b_min.b_0->b.a[b_min.untigI]>>1)]);
///each read
for (b_min.readI = 0; b_min.readI < node_min->n; b_min.readI++)
{
qn = node_min->a[b_min.readI]>>33;
if(reverse_sources[qn].length > 0) min_count++;
for (j = 0; j < (long long)reverse_sources[qn].length; j++)
{
tn = Get_tn(reverse_sources[qn].buffer[j]);
if(read_sg->seq[tn].del == 1)
{
get_R_to_U(ruIndex, tn, &tn, &is_Unitig);
if(tn == (uint32_t)-1 || is_Unitig == 1 || read_sg->seq[tn].del == 1) continue;
}
///each unitig
for (b_max.untigI = 0; b_max.untigI < b_max.b_0->b.n; b_max.untigI++)
{
node_max = &(ug->u.a[b_max.b_0->b.a[b_max.untigI]>>1]);
///each read
for (b_max.readI = 0; b_max.readI < node_max->n; b_max.readI++)
{
if(tn == (node_max->a[b_max.readI]>>33))
{
max_count++;
goto end_check_different_haps_ug;
}
}
}