Skip to content

Latest commit

 

History

History
executable file
·
287 lines (206 loc) · 10.9 KB

README.md

File metadata and controls

executable file
·
287 lines (206 loc) · 10.9 KB

BrushNet

This repository contains the implementation of the ECCV2024 paper "BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion"

Keywords: Image Inpainting, Diffusion Models, Image Generation

Xuan Ju12, Xian Liu12, Xintao Wang1*, Yuxuan Bian2, Ying Shan1, Qiang Xu2*
1ARC Lab, Tencent PCG 2The Chinese University of Hong Kong *Corresponding Author

🌐Project Page | 📜Arxiv | 🗄️Data | 📹Video | 🤗Hugging Face Demo |

📖 Table of Contents

TODO

  • Release trainig and inference code
  • Release checkpoint (sdv1.5)
  • Release checkpoint (sdxl). Sadly, I only have V100 for training this checkpoint, which can only train with a batch size of 1 with a slow speed. The current ckpt is only trained for a small step number thus perform not well. But fortunately, yuanhang volunteer to help training a better version. Please stay tuned! Thank yuanhang for his effort!
  • Release evluation code
  • Release gradio demo
  • Release comfyui demo. Thank nullquant (ConfyUI-BrushNet) and kijai (ComfyUI-BrushNet-Wrapper) for helping!
  • Release trainig data. Thank random123123 for helping!
  • We use BrushNet to participate in CVPR2024 GenAI Media Generation Challenge Workshop and get top prize! The solution is provided in InstructionGuidedEditing
  • Release a new version of checkpoint (sdxl).

🛠️ Method Overview

BrushNet is a diffusion-based text-guided image inpainting model that can be plug-and-play into any pre-trained diffusion model. Our architectural design incorporates two key insights: (1) dividing the masked image features and noisy latent reduces the model's learning load, and (2) leveraging dense per-pixel control over the entire pre-trained model enhances its suitability for image inpainting tasks. More analysis can be found in the main paper.

🚀 Getting Started

Environment Requirement 🌍

BrushNet has been implemented and tested on Pytorch 1.12.1 with python 3.9.

Clone the repo:

git clone https://github.com/TencentARC/BrushNet.git

We recommend you first use conda to create virtual environment, and install pytorch following official instructions. For example:

conda create -n diffusers python=3.9 -y
conda activate diffusers
python -m pip install --upgrade pip
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu116

Then, you can install diffusers (implemented in this repo) with:

pip install -e .

After that, you can install required packages thourgh:

cd examples/brushnet/
pip install -r requirements.txt

Data Download ⬇️

Dataset

You can download the BrushData and BrushBench here (as well as the EditBench we re-processed), which are used for training and testing the BrushNet. By downloading the data, you are agreeing to the terms and conditions of the license. The data structure should be like:

|-- data
    |-- BrushData
        |-- 00200.tar
        |-- 00201.tar
        |-- ...
    |-- BrushDench
        |-- images
        |-- mapping_file.json
    |-- EditBench
        |-- images
        |-- mapping_file.json

Noted: We only provide a part of the BrushData in google drive due to the space limit. random123123 has helped upload a full dataset on hugging face here. Thank for his help!

Checkpoints

Checkpoints of BrushNet can be downloaded from here. The ckpt folder contains

  • BrushNet pretrained checkpoints for Stable Diffusion v1.5 (segmentation_mask_brushnet_ckpt and random_mask_brushnet_ckpt)
  • pretrinaed Stable Diffusion v1.5 checkpoint (e.g., realisticVisionV60B1_v51VAE from Civitai). You can use scripts/convert_original_stable_diffusion_to_diffusers.py to process other models downloaded from Civitai.
  • BrushNet pretrained checkpoints for Stable Diffusion XL (segmentation_mask_brushnet_ckpt_sdxl_v1 and random_mask_brushnet_ckpt_sdxl_v0). A better version will be shortly released by yuanhang. Please stay tuned!
  • pretrinaed Stable Diffusion XL checkpoint (e.g., juggernautXL_juggernautX from Civitai). You can use StableDiffusionXLPipeline.from_single_file("path of safetensors").save_pretrained("path to save",safe_serialization=False) to process other models downloaded from Civitai.

The data structure should be like:

|-- data
    |-- BrushData
    |-- BrushDench
    |-- EditBench
    |-- ckpt
        |-- realisticVisionV60B1_v51VAE
            |-- model_index.json
            |-- vae
            |-- ...
        |-- segmentation_mask_brushnet_ckpt
        |-- segmentation_mask_brushnet_ckpt_sdxl_v0
        |-- random_mask_brushnet_ckpt
        |-- random_mask_brushnet_ckpt_sdxl_v0
        |-- ...

The checkpoint in segmentation_mask_brushnet_ckpt and segmentation_mask_brushnet_ckpt_sdxl_v0 provide checkpoints trained on BrushData, which has segmentation prior (mask are with the same shape of objects). The random_mask_brushnet_ckpt and random_mask_brushnet_ckpt_sdxl provide a more general ckpt for random mask shape.

🏃🏼 Running Scripts

Training 🤯

You can train with segmentation mask using the script:

# sd v1.5
accelerate launch examples/brushnet/train_brushnet.py \
--pretrained_model_name_or_path runwayml/stable-diffusion-v1-5 \
--output_dir runs/logs/brushnet_segmentationmask \
--train_data_dir data/BrushData \
--resolution 512 \
--learning_rate 1e-5 \
--train_batch_size 2 \
--tracker_project_name brushnet \
--report_to tensorboard \
--resume_from_checkpoint latest \
--validation_steps 300
--checkpointing_steps 10000 

# sdxl
accelerate launch examples/brushnet/train_brushnet_sdxl.py \
--pretrained_model_name_or_path stabilityai/stable-diffusion-xl-base-1.0 \
--output_dir runs/logs/brushnetsdxl_segmentationmask \
--train_data_dir data/BrushData \
--resolution 1024 \
--learning_rate 1e-5 \
--train_batch_size 1 \
--gradient_accumulation_steps 4 \
--tracker_project_name brushnet \
--report_to tensorboard \
--resume_from_checkpoint latest \
--validation_steps 300 \
--checkpointing_steps 10000 

To use custom dataset, you can process your own data to the format of BrushData and revise --train_data_dir.

You can train with random mask using the script (by adding --random_mask):

# sd v1.5
accelerate launch examples/brushnet/train_brushnet.py \
--pretrained_model_name_or_path runwayml/stable-diffusion-v1-5 \
--output_dir runs/logs/brushnet_randommask \
--train_data_dir data/BrushData \
--resolution 512 \
--learning_rate 1e-5 \
--train_batch_size 2 \
--tracker_project_name brushnet \
--report_to tensorboard \
--resume_from_checkpoint latest \
--validation_steps 300 \
--random_mask

# sdxl
accelerate launch examples/brushnet/train_brushnet_sdxl.py \
--pretrained_model_name_or_path stabilityai/stable-diffusion-xl-base-1.0 \
--output_dir runs/logs/brushnetsdxl_randommask \
--train_data_dir data/BrushData \
--resolution 1024 \
--learning_rate 1e-5 \
--train_batch_size 1 \
--gradient_accumulation_steps 4 \
--tracker_project_name brushnet \
--report_to tensorboard \
--resume_from_checkpoint latest \
--validation_steps 300 \
--checkpointing_steps 10000 \
--random_mask

Inference 📜

You can inference with the script:

# sd v1.5
python examples/brushnet/test_brushnet.py
# sdxl
python examples/brushnet/test_brushnet_sdxl.py

Since BrushNet is trained on Laion, it can only guarantee the performance on general scenarios. We recommend you train on your own data (e.g., product exhibition, virtual try-on) if you have high-quality industrial application requirements. We would also be appreciate if you would like to contribute your trained model!

You can also inference through gradio demo:

# sd v1.5
python examples/brushnet/app_brushnet.py

Evaluation 📏

You can evaluate using the script:

python examples/brushnet/evaluate_brushnet.py \
--brushnet_ckpt_path data/ckpt/segmentation_mask_brushnet_ckpt \
--image_save_path runs/evaluation_result/BrushBench/brushnet_segmask/inside \
--mapping_file data/BrushBench/mapping_file.json \
--base_dir data/BrushBench \
--mask_key inpainting_mask

The --mask_key indicates which kind of mask to use, inpainting_mask for inside inpainting and outpainting_mask for outside inpainting. The evaluation results (images and metrics) will be saved in --image_save_path.

Noted that you need to ignore the nsfw detector in src/diffusers/pipelines/brushnet/pipeline_brushnet.py#1261 to get the correct evaluation results. Moreover, we find different machine may generate different images, thus providing the results on our machine here.

🤝🏼 Cite Us

@misc{ju2024brushnet,
  title={BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion}, 
  author={Xuan Ju and Xian Liu and Xintao Wang and Yuxuan Bian and Ying Shan and Qiang Xu},
  year={2024},
  eprint={2403.06976},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

💖 Acknowledgement

Our code is modified based on diffusers, thanks to all the contributors!