-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_Exp_activity_seed.py
183 lines (145 loc) · 9.52 KB
/
run_Exp_activity_seed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import argparse
import os
import torch
import pickle
from exp.exp_activity import Exp_Activity
from datautils import *
from sklearn.model_selection import KFold,StratifiedKFold, train_test_split
from torch.utils.data import Subset
import random
import numpy as np
from person_activity import *
from utils.tools import write_file_binary
def training(args):
Exp = Exp_Activity
train_dataset = PersonActivity('/cluster/work/medinfmk/TSDataset/activity/', download=False)
#test_dataset = PhysioNet('/cluster/work/medinfmk/TSDataset/physionet/', train=True, download=False)
#train_idx, test_idx = train_test_split(list(range(len(dataset))), test_size=0.2)
#train_dataset = Subset(dataset, train_idx)
#test_dataset = Subset(dataset, test_idx)
setting = '{}_{}'.format(args.model,args.data)
folder_path = './results/' + setting + '/'+str(args.save_exp)+'/'
if not os.path.exists(folder_path):
os.makedirs(folder_path)
train_dataset,test_dataset = train_test_split(train_dataset,test_size=0.2,shuffle = True,random_state = args.random_seed)
test_dataset,valid_dataset = train_test_split(test_dataset,shuffle = True,test_size=0.5,random_state = args.random_seed)
print(len(train_dataset),len(valid_dataset),len(test_dataset))
if args.is_training:
for ii in range(args.itr):
# setting record of experiments
AUROC,ACC,AUPRC, PRE, REC = [],[],[],[],[]
print("----Finish second preprocessing in fold ", ii , " ------------")
#train_subsampler = torch.utils.data.SubsetRandomSampler(train_index)
#valid_subsampler = torch.utils.data.SubsetRandomSampler(valid_index)
#test_subsampler = torch.utils.data.SubsetRandomSampler(test_index)
exp = Exp(args) # set experiments
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
#exp.train(setting, train_dataset,valid_dataset,test_dataset,ii)
exp.train(setting, train_dataset, valid_dataset,test_dataset,ii)
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
auroc,acc,auprc, precision, recall = exp.test(setting, test_dataset,ii)
AUROC.append(auroc)
ACC.append(acc)
AUPRC.append(auprc)
PRE.append(precision)
REC.append(recall)
if args.do_predict:
print('>>>>>>>predicting : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.predict(setting, test_loader, True)
torch.cuda.empty_cache()
write_file_binary(folder_path,ii,setting,args,AUROC,ACC,AUPRC, PRE, REC)
return {"AUC":auroc,"acc":acc,"auprc":auprc,"pre":precision,"recall":recall}
if __name__ == '__main__':
print("+++++++++++++++++++++++")
parser = argparse.ArgumentParser(description='Autoformer & Transformer family for Time Series Forecasting')
# random seed
parser.add_argument('--random_seed', type=int, default=0, help='random seed')
# basic config
parser.add_argument('--is_training', type=int, required=True, default=1, help='status')
parser.add_argument('--model_id', type=str, required=True, default='test', help='model id')
parser.add_argument('--model', type=str, required=True, default='Autoformer',
help='model name, options: [Autoformer, Informer, Transformer]')
# data loader
parser.add_argument('--data', type=str, default='activity', help='dataset type')
parser.add_argument('--data_dir', type=str, default='/cluster/work/medinfmk/ICU_Delirium/data/content/datav5/fordm/', help='root path of the data file')
parser.add_argument('--label_dir', type=str, default='/cluster/work/medinfmk/ICU_Delirium/data/content/datav5/v5_scores.json', help='label file')
parser.add_argument('--checkpoints', type=str, default='/cluster/work/medinfmk/TSDataset/xingyu_data/checkpoints/', help='location of model checkpoints')
parser.add_argument('--classify_pertp',action='store_true' )
parser.add_argument('--save_exp', type=str, default='', help='location of different exp')
# Experiment
parser.add_argument('--cv', type=int, default=1, help='Fold of cross validation')
# PatchTST
parser.add_argument('--seq_len', type=int, default=2880, help='input sequence length')
parser.add_argument('--fc_dropout', type=float, default=0.05, help='fully connected dropout')
parser.add_argument('--patch_len', type=int, default=16, help='patch length')
parser.add_argument('--stride', type=float, default=0.0, help='range of each pooled attention attended to')
parser.add_argument('--padding_patch', default='end', help='None: None; end: padding on the end')
#patchTST
#num_patch = (max(args.context_points, args.patch_len)-args.patch_len) // args.stride + 1
#c_in:int, target_dim:int, patch_len:int, stride:int, num_patch:int,
#parser.add_argument('--channel_in', type=int, default=3, help='input channels')
parser.add_argument('--class_num', type=int, default=2, help='number of classes')
# Formers
parser.add_argument('--embed_type', type=int, default=0, help='0: default 1: value embedding + temporal embedding + positional embedding 2: value embedding + temporal embedding 3: value embedding + positional embedding 4: value embedding')
parser.add_argument('--enc_in', type=int, default=7, help='encoder input size') # DLinear with --individual, use this hyperparameter as the number of channels
parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
parser.add_argument('--c_out', type=int, default=7, help='output size')
parser.add_argument('--d_model', type=int, default=8, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=1, help='num of heads')
parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
parser.add_argument('--d_ff', type=int, default=8, help='dimension of fcn')
parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average')
parser.add_argument('--factor', type=int, default=1, help='attn factor')
parser.add_argument('--distil', action='store_false',
help='whether to use distilling in encoder, using this argument means not using distilling',
default=True)
parser.add_argument('--dropout', type=float, default=0.1, help='dropout')
parser.add_argument('--head_dropout', type=float, default=0.1, help='dropout')
parser.add_argument('--embed', type=str, default='timeF',
help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--activation', type=str, default='gelu', help='activation')
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
parser.add_argument('--do_predict', action='store_true', help='whether to predict unseen future data')
parser.add_argument('--divide', type=int,help='ratio to reduce patch length')
parser.add_argument('--grid', type=int,help='length of latent space')
#gru
parser.add_argument('--gru_out', type=int, default=8, help='dimension of out dimension in gru')
# optimization
parser.add_argument('--num_workers', type=int, default=10, help='data loader num workers')
parser.add_argument('--itr', type=int, default=2, help='experiments times')
parser.add_argument('--train_epochs', type=int, default=10, help='train epochs')
parser.add_argument('--batch_size', type=int, default=128, help='batch size of train input data')
parser.add_argument('--patience', type=int, default=20, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
parser.add_argument('--des', type=str, default='test', help='exp description')
parser.add_argument('--loss', type=str, default='mse', help='loss function')
parser.add_argument('--lradj', type=str, default='type3', help='adjust learning rate')
parser.add_argument('--pct_start', type=float, default=0.3, help='pct_start')
parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
# GPU
parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus')
parser.add_argument('--test_flop', action='store_true', default=False, help='See utils/tools for usage')
args = parser.parse_args()
# random seed
fix_seed = args.random_seed
random.seed(fix_seed)
torch.manual_seed(fix_seed)
np.random.seed(fix_seed)
#args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False
if args.use_gpu and torch.cuda.is_available():
device = torch.device('cuda')
torch.backends.cudnn.benchmark = True
else:
device = torch.device('cpu')
if args.use_gpu and args.use_multi_gpu:
args.devices = args.devices.replace(' ', '')
device_ids = args.devices.split(',')
args.device_ids = [int(id_) for id_ in device_ids]
args.gpu = args.device_ids[0]
print('Args in experiment:')
print(args)
training(args)