-
Notifications
You must be signed in to change notification settings - Fork 0
/
pmproofs.txt
1444 lines (1211 loc) · 63.6 KB
/
pmproofs.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Shortest known proofs of the propositional calculus theorems from
-----------------------------------------------------------------
_Principia Mathematica_
-----------------------
----------------------------------------------------------------------------
~~ PUBLIC DOMAIN ~~
This work is waived of all rights, including copyright, according to the CC0
Public Domain Dedication. http://creativecommons.org/publicdomain/zero/1.0/
----------------------------------------------------------------------------
Created and maintained by Norman Megill http://us.metamath.org/email.html
Revision history:
15-Jun-2024: Samiro Discher (SD) found shorter proofs for 40 theorems with
the proof compression feature '--transform -z' of his software tool
pmGenerator (version 1.2.1).
17-Apr-2023: Shorter proofs of *3.44, *4.77, *4.85, *4.86, and biass
were found by Samiro Discher (SD).
In addition, eliminated (sub-)proofs by lexicographically smaller
(sub-)strings. 28 proofs affected: *2.42, *2.48, *2.51, *2.56, *2.85,
*2.86, *3.14, *3.48, *4.51, *4.6, *4.62, *4.78, *4.79, *4.83, *5.12,
*5.15, *5.22, *5.23, *5.24, *5.32, *5.35, *5.41, *5.501, *5.53, *5.61,
*5.7, *5.71, and *5.74. Exhaustively searched proofs of lengths up to 37.
03-Oct-2022: Eliminated (sub-)proofs by lexicographically smaller
(sub-)strings. 26 proofs affected: *2.6, *2.67, *2.68, *2.69, *2.85,
*2.86, *3.37, *3.4, *4.72, *4.78, *4.79, *5.1, *5.15, *5.18, *5.19,
*5.23, *5.24, *5.25, *5.32, *5.35, *5.41, *5.501, *5.53, *5.62, *5.7,
and *5.74. Exhaustively searched proofs of lengths up to 29.
02-Oct-2022: Shorter proofs of *2.62, *3.31, *3.43, *3.44, *4.14, *4.32,
*4.39, *4.41, *4.76, *4.77, *4.86, *4.87, *5.31, *5.6, *5.75, meredith,
and biass were found by Samiro Discher (SD).
15-Oct-2020: Shorter proofs of *5.19, *3.31, *3.43, *3.44, *4.39,
*4.82, and meredith were found by Rohan Ridenour (RR). A proof of biass
by RR was added. (Theorem biass completes the set of theorems needed as
axioms for classical equivalence logic, although it was omitted from
_Principia Mathematica_.)
23-Jul-2020: Shorter proofs of *3.37 and *3.44 were found by Rohan Ridenour
(RR).
20-Jul-2020: Shorter proofs of *2.6, *5.25, *5.31, *5.62, and meredith
were found by Rohan Ridenour (RR). See the 20-Jul-2020 note on
http://us.metamath.org/mmsolitaire/mms.html for a mention of one of
the tools he used.
21-Aug-2018: A shorter proof of peirce was found by George Szpiro (GSZ).
18-Aug-2018: Added proof of Peirce's axiom (peirce).
10-May-2018: A shorter proof of *3.37 was found by George Szpiro (GSZ).
22-Apr-2018: A shorter proof of meredith was found by George Szpiro (GSZ).
22-Mar-2018: drule.c now allows checking a single proof. See the note
below with this date.
13-Feb-2013: Shorter proofs of *3.1, *3.43, *4.4, *4.41, *4.5, *4.76,
*4.83, *5.33, *5.35, *5.36, and meredith were found by Scott Fenton (SF).
23-Jan-2012: Added a clarification.
30-Aug-2011: Shorter proofs of *3.33, *3.45, *4.36, and meredith
were found by Scott Fenton (SF).
12-Jun-2010: A proof of Meredith's single axiom for propositional
calculus was added. Contributed by Scott Fenton.
06-Mar-2008: Corrected theorems *2.36, *2.37, and *2.38, which were
shown with v expanded into ~ and ->. (The "Result of proof" and the
proof itself were still correct, however).
04-May-2004: Gregory Bush found shorter proofs for 67 of the original
193 proofs. This file has been updated with them. When you see a
comment like "(GB 35->25)" after the theorem, it means the original
proof had 35 steps and Greg found a shorter version with only 25 steps.
I found the original proofs in the 1990s. I believe that all the proofs
with 21 or fewer steps are the shortest possible since they resulted
from an exhaustive search.
------------------------------------------------------------------------
Description
-----------
This file contains proofs of all 193 theorems of propositional calculus
in Whitehead and Russell's _Principia Mathematica_, directly from axioms
ax-1, ax-2, ax-3, and ax-mp in the Metamath Solitaire applet
(http://us.metamath.org/mmsolitaire/mms.html). These are the shortest
known direct proofs. If you find a shorter one, let me know at nm (at)
alum (dot) mit (dot) edu (include the word "Metamath" in the subject).
In these proofs, the resulting theorem is in a form which has all
abbreviations expanded, so instead of "(~ P v P)" for theorem *2.1 you
will see "(~ ~ P -> P)" or in Metamath Solitaire's ASCII notation,
"(-. -. P -> P)". To get "(~ P v P)" we would apply the definition of
logical OR, which is shown in the applet using: Select Logic Family ->
Propositional Calculus + Definitions -> Axiom Information -> Axioms ->
df-or. If we wanted we could extend the proof to apply the definition
directly in the proof, but that is somewhat tedious and was not our
purpose here.
In addition, sometimes "more general" theorems are proved. For example,
the proof of theorem *1.6 actually proves
"((P -> Q) -> ((R -> P) -> (R -> Q)))" in the applet. We obtain theorem
*1.6 by substituting "-. R" for "R", then applying the definition of
logical OR.
The notation for proofs is as follows. For theorem *1.6, for example,
the proof shown is "DD2D121". To enter this into the applet, you enter
the steps in _reverse_ order i.e. "121D2DD". The character mapping is
as follows: "1" is ax-1, "2" is ax-2, "3" is ax-3, and "D" is ax-mp.
Thus this proof would be entered into the applet as:
ax-1 ax-2 ax-1 ax-mp ax-2 ax-mp ax-mp
As a historical note, the notation in "DD2D121" is called "condensed
detachment" and expresses the proof in Polish notation. It was invented
by logician C. A. Meredith in the 1950's. For more information on this
notation you can reference the article "A Finitely Axiomatized
Formalization of Predicate Calculus with Equality" linked to from the
Metamath Home Page. The Appendix in that article shows how to write a
very simple program for verifying these proofs. For longer proofs such
a program is much more convenient than repeated clicks on the applet.
If this interests you, I have a hastily-written C program, drule.c,
that implements the algorithm and which was used to verify these proofs.
It is unpolished and probably not suitable for general release, but it
has no known bugs. Download here:
http://us.metamath.org/downloads/drule.c
To compile:
gcc drule.c -o drule
To run:
./drule < pmproofs.txt > newpmproofs.txt
where "pmproofs.txt" is the name of this file. Then drule.c will verify
each proof below and also regenerate the "Result of proof" and the
number of steps in the output file "newpmproofs.txt". Unfortunately, it
will also discard this comment header, which must be put back by hand.
Note added 22-Mar-2018: If given a single argument, drule.c will now
assume it is a proof and print the result in Polish prefix notation.
E.g. "./drule DD211" will print ">PP".
See comments at the top of drule.c for more information. Note:
everything up to and including the LAST LINE OF DASHES below is treated
as a comment, i.e. discarded, by the drule.c proof checker. In
addition, due to the crudeness of drule.c, the text above the last line
of dashes MUST NOT CONTAIN SEMICOLONS. This is not a bug but is an
intentional design shortcut made to write the program quickly.
(Algorithm: Until there is a semicolon identifying the end of the
first statement, no processing occurs. When a line of dashes is
encountered, reading of the input restarts.) If you want to enhance the
program, be my guest. :)
------------------------------------------------------------------------
File format
-----------
For each theorem below, we list: (1) the theorem as it appears in
_Principia Mathematica_ along with P.M.'s theorem number, (2) the
unabbreviated result of the proof as it will appear in the Metamath
Solitaire Java applet, and (3) the proof in the condensed detachment
notation explained above. A semicolon ends the theorem or proof, and an
exclamation point means the rest of the line is a comment. All
proofs were verified and formatted by drule.c as explained above.
In the condensed detachment notation, "D" stands for the second of its
two arguments detached from the first (i.e. the first argument is the
major premise, and the second the minor premise, of modus ponens). "1",
"2", and "3" stand for the three axioms of the system called P_2
(attributed to Lukasiewicz and popularized by Church):
ax-1 (P -> (Q -> P))
ax-2 ((P -> (Q -> R)) -> ((P -> Q) -> (P -> R)))
ax-3 ((~ P -> ~ Q) -> (Q -> P))
These axioms are hard-coded into the drule.c program (see below).
------------------------------------------------------------------------
Clarification added 23-Jan-2012
-------------------------------
The general idea behind this page is to present the shortest known
formal proof as it is usually defined in most logic textbooks for a
system with axiom schemes. In such a system, a proof step is either an
axiom (i.e. a specific _instance_ of an axiom scheme) or the result of
an inference rule applied to previous steps.
The D-rule, as used in the literature, results in a (most general)
_scheme_. With the aid of a more complex notation, a proof could be
built up from D-proof pieces that are referenced multiple times as
subproofs, resulting in fewer total steps. However, on this page, the
D-notation is intended instead merely as a convenient way to abbreviate
textbook formal proofs, in which it is rare that a specific _instance_
of an axiom scheme repeats in the formal proof. In the occasional case
where that happens, a slightly shorter formal proof could be
reconstructed from the D-proof by expanding it and looking for repeated
instances, obtaining a formal proof whose length would be slightly less
than the D-proof length. (I haven't looked at how often such repeated
instances occur or even if they occur at all in these proofs.)
To avoid such quibbles, we can restate our goal as simply being the
shortest complete formal proof expressible in pure D-notation.
---------------------------------------------------------------------------
For drule.c: THERE MUST BE NO SEMICOLONS IN THE ENTIRE BODY OF TEXT ABOVE.
For drule.c: THIS COMMENT HEADER ENDS WITH THE LINE OF DASHES BELOW.
---------------------------------------------------------------------------
((P v P) -> P); ! *1.2 Taut
((~ P -> P) -> P); ! Result of proof
DD2DD2D13D2DD2D1311; ! 19 steps
(Q -> (P v Q)); ! *1.3 Add
(P -> (Q -> P)); ! Result of proof
1; ! 1 step
((P v Q) -> (Q v P)); ! *1.4
((~ P -> Q) -> (~ Q -> P)); ! Result of proof
DD2D13D2D1D3DD2DD2D13DD2D1311; ! 29 steps
((P v (Q v R)) -> (Q v (P v R))); ! *1.5 Assoc
((P -> (Q -> R)) -> (Q -> (P -> R))); ! Result of proof
DD2D1DD22D11DD2D112; ! 19 steps
((Q -> R) -> ((P v Q) -> (P v R))); ! *1.6 Sum
((P -> Q) -> ((R -> P) -> (R -> Q))); ! Result of proof
DD2D121; ! 7 steps
((P -> ~ P) -> ~ P); ! *2.01
((P -> ~ P) -> ~ P); ! Result of proof
DD2D1DD2DD2D13D2DD2D1311DD2D1DD22D2DD2D13DD2D1311; ! 49 steps
(Q -> (P -> Q)); ! *2.02 Simp
(P -> (Q -> P)); ! Result of proof
1; ! 1 step
((P -> ~ Q) -> (Q -> ~ P)); ! *2.03
((P -> ~ Q) -> (Q -> ~ P)); ! Result of proof
DD2D13DD2D1DD22D2DD2D13DD2D1311; ! 31 steps
((P -> (Q -> R)) -> (Q -> (P -> R))); ! *2.04 Comm
((P -> (Q -> R)) -> (Q -> (P -> R))); ! Result of proof
DD2D1DD22D11DD2D112; ! 19 steps
((Q -> R) -> ((P -> Q) -> (P -> R))); ! *2.05 Syll
((P -> Q) -> ((R -> P) -> (R -> Q))); ! Result of proof
DD2D121; ! 7 steps
((P -> Q) -> ((Q -> R) -> (P -> R))); ! *2.06 Syll
((P -> Q) -> ((Q -> R) -> (P -> R))); ! Result of proof
DD2D1D2DD2D1211; ! 15 steps
(P -> (P v P)); ! *2.07
(P -> (Q -> P)); ! Result of proof
1; ! 1 step
(P -> P); ! *2.08 Id
(P -> P); ! Result of proof
DD211; ! 5 steps
(~ P v P); ! *2.1
(~ ~ P -> P); ! Result of proof
DD2DD2D13DD2D1311; ! 17 steps
(P v ~ P); ! *2.11
(P -> P); ! Result of proof
DD211; ! 5 steps
(P -> ~ ~ P); ! *2.12
(P -> ~ ~ P); ! Result of proof
D3DD2DD2D13DD2D1311; ! 19 steps
(P v ~ ~ ~ P); ! *2.13
(P -> ~ ~ P); ! Result of proof
D3DD2DD2D13DD2D1311; ! 19 steps
(~ ~ P -> P); ! *2.14
(~ ~ P -> P); ! Result of proof
DD2DD2D13DD2D1311; ! 17 steps
((~ P -> Q) -> (~ Q -> P)); ! *2.15 Transp
((~ P -> Q) -> (~ Q -> P)); ! Result of proof
DD2D13D2D1D3DD2DD2D13DD2D1311; ! 29 steps
((P -> Q) -> (~ Q -> ~ P)); ! *2.16
((P -> Q) -> (~ Q -> ~ P)); ! Result of proof
DD2D1DD2D13DD2D1DD22D2DD2D13DD2D1311D2D1D3DD2DD2D13DD2D1311
; ! 59 steps
((~ Q -> ~ P) -> (P -> Q)); ! *2.17 Transp
((~ P -> ~ Q) -> (Q -> P)); ! Result of proof
3; ! 1 step
((~ P -> P) -> P); ! *2.18
((~ P -> P) -> P); ! Result of proof
DD2DD2D13D2DD2D1311; ! 19 steps
(P -> (P v Q)); ! *2.2
(P -> (~ P -> Q)); ! Result of proof
DD2D1D2DD2D1311; ! 15 steps
(~ P -> (P -> Q)); ! *2.21
(~ P -> (P -> Q)); ! Result of proof
DD2D131; ! 7 steps
(P -> (~ P -> Q)); ! *2.24
(P -> (~ P -> Q)); ! Result of proof
DD2D1D2DD2D1311; ! 15 steps
(P v ((P v Q) -> Q)); ! *2.25
(P -> ((P -> Q) -> Q)); ! Result of proof
DD2D1D2DD2111; ! 13 steps
(~ P v ((P -> Q) -> Q)); ! *2.26 (GB 35->25)
(~ ~ P -> ((P -> Q) -> Q)); ! Result of proof
DD2D1D2DD211DD2D13DD2D131; ! 25 steps
(P -> ((P -> Q) -> Q)); ! *2.27
(P -> ((P -> Q) -> Q)); ! Result of proof
DD2D1D2DD2111; ! 13 steps
((P v (Q v R)) -> (P v (R v Q))); ! *2.3
((P -> (~ Q -> R)) -> (P -> (~ R -> Q))); ! Result of proof
D2D1DD2D13D2D1D3DD2DD2D13DD2D1311; ! 33 steps
((P v (Q v R)) -> ((P v Q) v R)); ! *2.31
((P -> (~ Q -> R)) -> (~ (P -> Q) -> R)); ! Result of proof
DD2D1DD2D13D2D1D3DD2DD2D13DD2D1311DD2D1DD2D1DD22D11DD2D112D2D1DD2D13D
2D1D3DD2DD2D13DD2D1311; ! 91 steps
(((P v Q) v R) -> (P v (Q v R))); ! *2.32 (SD 91->83)
((~ (P -> Q) -> R) -> (P -> (~ Q -> R))); ! Result of proof
DD2DD2D12DD2D11DD2D121D1DD2D13DD2D1D2D1D3DD2DD2D13DD2D1311DD2D1D2DD2D
D2D13DD2D13111; ! 83 steps
((Q -> R) -> ((P v Q) -> (R v P))); ! *2.36
((P -> Q) -> ((~ R -> P) -> (~ Q -> R))); ! Result of proof
DD2D1D2D1DD2D13D2D1D3DD2DD2D13DD2D1311DD2D121; ! 45 steps
((Q -> R) -> ((Q v P) -> (P v R))); ! *2.37
((P -> Q) -> ((~ P -> R) -> (~ R -> Q))); ! Result of proof
DD2D1DD2DD2D121D1DD2D13D2D1D3DD2DD2D13DD2D1311DD2D121; ! 53 steps
((Q -> R) -> ((Q v P) -> (R v P))); ! *2.38
((P -> Q) -> ((~ P -> R) -> (~ Q -> R))); ! Result of proof
DD2D1DD2D1D2DD2D1211DD2D1DD2D13DD2D1DD22D2DD2D13DD2D1311D2D1D3DD2DD2D
13DD2D1311; ! 79 steps
((P v (P v Q)) -> (P v Q)); ! *2.4
((P -> (P -> Q)) -> (P -> Q)); ! Result of proof
DD22D21; ! 7 steps
((Q v (P v Q)) -> (P v Q)); ! *2.41
((~ P -> (Q -> P)) -> (Q -> P)); ! Result of proof
DD2D1D2D1DD2DD2D13D2DD2D1311DD2D1DD22D11DD2D112; ! 47 steps
((~ P v (P -> Q)) -> (P -> Q)); ! *2.42
((~ ~ P -> (P -> Q)) -> (P -> Q)); ! Result of proof
DD2D1DD22D21DD2D1DD22D1D3DD2DD2D13DD2D13111; ! 43 steps
((P -> (P -> Q)) -> (P -> Q)); ! *2.43
((P -> (P -> Q)) -> (P -> Q)); ! Result of proof
DD22D21; ! 7 steps
(~ (P v Q) -> ~ P); ! *2.45
(~ (P -> Q) -> P); ! Result of proof
D3DD2D1D3DD2DD2D13DD2D1311DD2D131; ! 33 steps
(~ (P v Q) -> ~ Q); ! *2.46
(~ (P -> Q) -> ~ Q); ! Result of proof
D3DD2D1D3DD2DD2D13DD2D1311DD2D13DD2D131; ! 39 steps
(~ (P v Q) -> (~ P v Q)); ! *2.47 (GB 35->31)
(~ (P -> Q) -> (~ P -> R)); ! Result of proof
DD2D1DD22D1DD2D131DD2D11DD2D131; ! 31 steps
(~ (P v Q) -> (P v ~ Q)); ! *2.48 (GB 45->43)
(~ (P -> Q) -> (R -> ~ Q)); ! Result of proof
DD2D1DD2D13DD2D1DD22D1DD2D13DD2D1311DD2D131; ! 43 steps
(~ (P v Q) -> (~ P v ~ Q)); ! *2.49 (GB 35->31)
(~ (P -> Q) -> (~ P -> R)); ! Result of proof
DD2D1DD22D1DD2D131DD2D11DD2D131; ! 31 steps
(~ (P -> Q) -> (~ P -> Q)); ! *2.5 (GB 35->31)
(~ (P -> Q) -> (~ P -> R)); ! Result of proof
DD2D1DD22D1DD2D131DD2D11DD2D131; ! 31 steps
(~ (P -> Q) -> (P -> ~ Q)); ! *2.51 (GB 45->43)
(~ (P -> Q) -> (R -> ~ Q)); ! Result of proof
DD2D1DD2D13DD2D1DD22D1DD2D13DD2D1311DD2D131; ! 43 steps
(~ (P -> Q) -> (~ P -> ~ Q)); ! *2.52 (GB 35->31)
(~ (P -> Q) -> (~ P -> R)); ! Result of proof
DD2D1DD22D1DD2D131DD2D11DD2D131; ! 31 steps
(~ (P -> Q) -> (Q -> P)); ! *2.521 (GB 29->25)
(~ (P -> Q) -> (Q -> R)); ! Result of proof
DD2D1DD22D11DD2D11DD2D131; ! 25 steps
((P v Q) -> (~ P -> Q)); ! *2.53
(P -> P); ! Result of proof
DD211; ! 5 steps
((~ P -> Q) -> (P v Q)); ! *2.54
(P -> P); ! Result of proof
DD211; ! 5 steps
(~ P -> ((P v Q) -> Q)); ! *2.55
(P -> ((P -> Q) -> Q)); ! Result of proof
DD2D1D2DD2111; ! 13 steps
(~ Q -> ((P v Q) -> P)); ! *2.56 (GB 37->35)
(~ P -> ((~ Q -> P) -> Q)); ! Result of proof
DD2D1D2D1DD23D11DD2D12DD2D11DD2D131; ! 35 steps
((~ P -> Q) -> ((P -> Q) -> Q)); ! *2.6 (RR 89->77)
((~ P -> Q) -> ((P -> Q) -> Q)); ! Result of proof
DD2D1DD2D1DD2D1D2D1DD2DD2D13D2DD2D1311DD2D1D2DD2D12113D2D1D3DD2DD2D13
DD2D1311; ! 77 steps
((P -> Q) -> ((~ P -> Q) -> Q)); ! *2.61
((P -> Q) -> ((~ P -> Q) -> Q)); ! Result of proof
DD2D1D2D1DD2DD2D13D2DD2D1311DD2D1DD2DD2D121D1DD2D13D2D1D3DD2DD2D13DD2
D1311DD2D121; ! 81 steps
((P v Q) -> ((P -> Q) -> Q)); ! *2.62 (SD 89->77)
((~ P -> Q) -> ((P -> Q) -> Q)); ! Result of proof
DD2D1DD2D1DD2D1D2D1DD2DD2D13D2DD2D1311DD2D1D2DD2D12113D2D1D3DD2DD2D13
DD2D1311; ! 77 steps
((P -> Q) -> ((P v Q) -> Q)); ! *2.621
((P -> Q) -> ((~ P -> Q) -> Q)); ! Result of proof
DD2D1D2D1DD2DD2D13D2DD2D1311DD2D1DD2DD2D121D1DD2D13D2D1D3DD2DD2D13DD2
D1311DD2D121; ! 81 steps
((P v Q) -> ((~ P v Q) -> Q)); ! *2.63
((P -> Q) -> ((~ P -> Q) -> Q)); ! Result of proof
DD2D1D2D1DD2DD2D13D2DD2D1311DD2D1DD2DD2D121D1DD2D13D2D1D3DD2DD2D13DD2
D1311DD2D121; ! 81 steps
((P v Q) -> ((P v ~ Q) -> P)); ! *2.64 (GB 61->39)
((~ P -> Q) -> ((~ P -> ~ Q) -> P)); ! Result of proof
DD2D13D2DD2D13DD2D1D2DD2DD2D13DD2D13111; ! 39 steps
((P -> Q) -> ((P -> ~ Q) -> ~ P)); ! *2.65
((P -> Q) -> ((P -> ~ Q) -> ~ P)); ! Result of proof
DD2D1DD2D13DD2D1DD22D2DD2D13DD2D1311D2DD2D13DD2D1D2DD2DD2D13DD2D13111
; ! 69 steps
(((P v Q) -> Q) -> (P -> Q)); ! *2.67
(((~ P -> Q) -> R) -> (P -> R)); ! Result of proof
DD2D1DD22D1DD2D1D2DD2D13111; ! 27 steps
(((P -> Q) -> Q) -> (P v Q)); ! *2.68
(((P -> Q) -> R) -> (~ P -> R)); ! Result of proof
DD2D1DD22D1DD2D1311; ! 19 steps
(((P -> Q) -> Q) -> ((Q -> P) -> P)); ! *2.69
(((P -> Q) -> R) -> ((R -> P) -> P)); ! Result of proof
DD2D1DD2D1D2D1DD2DD2D13D2DD2D1311DD2D1D2DD2D1211DD2D1DD22D1DD2D1311
; ! 67 steps
((P -> Q) -> (((P v Q) v R) -> (Q v R))); ! *2.73
((P -> Q) -> ((~ (~ P -> Q) -> R) -> (~ Q -> R))); ! Result of proof
DD2D1DD2D1D2DD2D1211DD2D1DD2D1DD2D13DD2D1DD22D2DD2D13DD2D1311D2D1D3DD
2DD2D13DD2D1311DD2D1D2D1DD2DD2D13D2DD2D1311DD2D1DD2DD2D121D1DD2D13D2D
1D3DD2DD2D13DD2D1311DD2D121; ! 165 steps
((Q -> P) -> (((P v Q) v R) -> (P v R))); ! *2.74
((P -> Q) -> ((~ (~ Q -> P) -> R) -> (~ Q -> R))); ! Result of proof
DD2D1DD2D1D2DD2D1211DD2D1DD2D1DD2D13DD2D1DD22D2DD2D13DD2D1311D2D1D3DD
2DD2D13DD2D1311DD2D1D2D1DD2DD2D13D2DD2D1311DD2D121; ! 119 steps
((P v Q) -> ((P v (Q -> R)) -> (P v R))); ! *2.75
((P -> Q) -> ((P -> (Q -> R)) -> (P -> R))); ! Result of proof
DD2D1D221; ! 9 steps
((P v (Q -> R)) -> ((P v Q) -> (P v R))); ! *2.76
((P -> (Q -> R)) -> ((P -> Q) -> (P -> R))); ! Result of proof
2; ! 1 step
((P -> (Q -> R)) -> ((P -> Q) -> (P -> R))); ! *2.77
((P -> (Q -> R)) -> ((P -> Q) -> (P -> R))); ! Result of proof
2; ! 1 step
((Q v R) -> ((~ R v S) -> (Q v S))); ! *2.8 (GB 63->43)
((P -> Q) -> ((~ ~ Q -> R) -> (P -> R))); ! Result of proof
DD2D1DD2D1D2DD2D1211D2D1D3DD2DD2D13DD2D1311; ! 43 steps
((Q -> (R -> S)) -> ((P v Q) -> ((P v R) -> (P v S)))); ! *2.81
((P -> (Q -> R)) -> ((S -> P) -> ((S -> Q) -> (S -> R))))
; ! Result of proof
DD2D1D2D12DD2D121; ! 17 steps
(((P v Q) v R) -> (((P v ~ R) v S) -> ((P v Q) v S))); ! *2.82
((~ (P -> Q) -> R) -> ((~ (P -> ~ R) -> S) -> (~ (P -> Q) -> S)))
; ! Result of proof
DD2D1DD2D1D2DD2D1211D2DD2D1DD2D13DD2D1D2DD2DD2D13DD2D13111D3DD2D1D3DD
2DD2D13DD2D1311DD2D131; ! 91 steps
((P -> (Q -> R)) -> ((P -> (R -> S)) -> (P -> (Q -> S)))); ! *2.83
((P -> (Q -> R)) -> ((P -> (R -> S)) -> (P -> (Q -> S))))
; ! Result of proof
DD2D12D2D1DD2D1D2DD2D1211; ! 25 steps
(((P v Q) -> (P v R)) -> (P v (Q -> R))); ! *2.85 (GB 41->37)
(((P -> Q) -> (R -> S)) -> (R -> (Q -> S))); ! Result of proof
DD2D1DD22D11DD2D11DD2D12DD2D1DD22D111; ! 37 steps
(((P -> Q) -> (P -> R)) -> (P -> (Q -> R))); ! *2.86 (GB 41->37)
(((P -> Q) -> (R -> S)) -> (R -> (Q -> S))); ! Result of proof
DD2D1DD22D11DD2D11DD2D12DD2D1DD22D111; ! 37 steps
((P ^ Q) -> ~ (~ P v ~ Q)); ! *3.1 (GB 79->73) (SF 73->69)
(~ (P -> Q) -> ~ (~ ~ P -> Q)); ! Result of proof
D3DD2D1D3DD2DD2D13DD2D1311DD2DD2D12DD2D13DD2D131D1D3DD2DD2D13DD2D1311
; ! 69 steps
(~ (~ P v ~ Q) -> (P ^ Q)); ! *3.11 (GB 73->63)
(~ (~ ~ P -> Q) -> ~ (P -> Q)); ! Result of proof
D3DD2D1D3DD2DD2D13DD2D1311DD2D1DD22D2DD2D13DD2D131DD2D13DD2D131
; ! 63 steps
((~ P v ~ Q) v (P ^ Q)); ! *3.12 (GB 73->63)
(~ (~ ~ P -> Q) -> ~ (P -> Q)); ! Result of proof
D3DD2D1D3DD2DD2D13DD2D1311DD2D1DD22D2DD2D13DD2D131DD2D13DD2D131
; ! 63 steps
(~ (P ^ Q) -> (~ P v ~ Q)); ! *3.13 (GB 47->37)
(~ ~ (P -> Q) -> (~ ~ P -> Q)); ! Result of proof
DD2D1DD22D2DD2D13DD2D131DD2D13DD2D131; ! 37 steps
((~ P v ~ Q) -> ~ (P ^ Q)); ! *3.14
((~ ~ P -> Q) -> ~ ~ (P -> Q)); ! Result of proof
DD2D1D3DD2DD2D13DD2D1311DD2D1DD22D1D3DD2DD2D13DD2D13111; ! 55 steps
(P -> (Q -> (P ^ Q))); ! *3.2
(P -> (Q -> ~ (P -> ~ Q))); ! Result of proof
DD2D13DD2D1D2DD2DD2D13DD2D13111; ! 31 steps
(Q -> (P -> (P ^ Q))); ! *3.21
(P -> (Q -> ~ (Q -> ~ P))); ! Result of proof
DD2D1D2DD2D13DD2D1D2DD2DD2D13DD2D131111; ! 39 steps
((P ^ Q) -> (Q ^ P)); ! *3.22 (GB 79->69)
(~ (P -> ~ Q) -> ~ (Q -> ~ P)); ! Result of proof
D3DD2D1D3DD2DD2D13DD2D1311DD2D13DD2D1DD22D2DD2D13DD2D131DD2D13DD2D131
; ! 69 steps
~ (P ^ ~ P); ! *3.24
~ ~ (P -> ~ ~ P); ! Result of proof
DD3DD2DD2D13DD2D1311D3DD2DD2D13DD2D1311; ! 39 steps
((P ^ Q) -> P); ! *3.26 Simp
(~ (P -> Q) -> P); ! Result of proof
D3DD2D1D3DD2DD2D13DD2D1311DD2D131; ! 33 steps
((P ^ Q) -> Q); ! *3.27 Simp
(~ (P -> ~ Q) -> Q); ! Result of proof
D3DD2D1D3DD2DD2D13DD2D13111; ! 27 steps
(((P ^ Q) -> R) -> (P -> (Q -> R)))
; ! *3.3 Exp (GB 63->59) (SD 59->55)
((~ (P -> ~ Q) -> R) -> (P -> (Q -> R))); ! Result of proof
DD2DD2D12DD2D11DD2D121D1DD2D13DD2D1D2DD2DD2D13DD2D13111; ! 55 steps
((P -> (Q -> R)) -> ((P ^ Q) -> R)); ! *3.31 Imp (SD 103->83)
((P -> (Q -> R)) -> (~ (P -> ~ Q) -> R)); ! Result of proof
DD2DD2D12DD2DD2D121D1D3DD2D1D3DD2DD2D13DD2D1311DD2D131D1D3DD2D1D3DD2D
D2D13DD2D13111; ! 83 steps
(((P -> Q) ^ (Q -> R)) -> (P -> R))
; ! *3.33 Syll (GB 113->105) (SF 105->95) (SD 95->73)
(~ ((P -> Q) -> ~ (Q -> R)) -> (P -> R)); ! Result of proof
DD2DD2D12DD2D13DD2D1DD22D11DD2D11DD2D131D3DD2D1D3DD2DD2D13DD2D1311DD2
D131; ! 73 steps
(((Q -> R) ^ (P -> Q)) -> (P -> R)); ! *3.34 Syll (SD 105->73)
(~ ((P -> Q) -> ~ (R -> P)) -> (R -> Q)); ! Result of proof
DD2DD2D12DD2D13DD2D1DD22D1DD2D131DD2D11DD2D131D3DD2D1D3DD2DD2D13DD2D1
3111; ! 73 steps
((P ^ (P -> Q)) -> Q); ! *3.35 Ass (GB 93->63)
(~ (P -> ~ (P -> Q)) -> Q); ! Result of proof
DD2D3DD2D1D3DD2DD2D13DD2D13111D3DD2D1D3DD2DD2D13DD2D1311DD2D131
; ! 63 steps
(((P ^ Q) -> R) -> ((P ^ ~ R) -> ~ Q))
; ! *3.37 Transp (GSZ 179->171) (RR 171->141)
((~ (P -> ~ Q) -> R) -> (~ (P -> ~ ~ R) -> ~ Q)); ! Result of proof
DD2D1DD2D13D2DD2D1DD2D1D2D1DD2D1D3DD2DD2D13DD2D1311D2D1D3DD2DD2D13DD2
D1311DD2D1DD2D1D2DD2D1211D2DD2D13DD2D1D2DD2DD2D13DD2D13111DD2D13DD2D1
311; ! 141 steps
((P ^ Q) -> (P -> Q)); ! *3.4 (GB 33->31)
(~ (P -> ~ Q) -> (R -> Q)); ! Result of proof
DD2D13DD2D1DD22D11DD2D11DD2D131; ! 31 steps
((P -> R) -> ((P ^ Q) -> R)); ! *3.41
((P -> Q) -> (~ (P -> R) -> Q)); ! Result of proof
DD2DD2D121D1D3DD2D1D3DD2DD2D13DD2D1311DD2D131; ! 45 steps
((Q -> R) -> ((P ^ Q) -> R)); ! *3.42
((P -> Q) -> (~ (R -> ~ P) -> Q)); ! Result of proof
DD2DD2D121D1D3DD2D1D3DD2DD2D13DD2D13111; ! 39 steps
(((P -> Q) ^ (P -> R)) -> (P -> (Q ^ R)))
; ! *3.43 Comp (SF 143->139) (RR 139->137) (SD 137->109)
(~ ((P -> Q) -> ~ (P -> R)) -> (P -> ~ (Q -> ~ R)))
; ! Result of proof
DD2DD2D1DD2D12D2D1DD2D13DD2D1D2DD2DD2D13DD2D13111D3DD2D1D3DD2DD2D13DD
2D1311DD2D131D3DD2D1D3DD2DD2D13DD2D13111; ! 109 steps
(((Q -> P) ^ (R -> P)) -> ((Q v R) -> P))
; ! *3.44 (RR 271->203) (SD 203->161)
(~ ((P -> Q) -> ~ (R -> Q)) -> ((~ P -> R) -> Q)); ! Result of proof
DD2D1D2D1DD2DD2D13D2DD2D1311DD2DD2D12DD2D11DD2D12DD2D13DD2D1DD22D1DD2
D131DD2D11DD2D131DD2D1D2D1DD2D13D2D1D3DD2DD2D13DD2D1311DD2D12DD2D13DD
2D1DD22D11DD2D11DD2D131; ! 161 steps
((P -> Q) -> ((P ^ R) -> (Q ^ R)))
; ! *3.45 Fact (GB 79->71) (SF 71->61)
((P -> Q) -> (~ (P -> R) -> ~ (Q -> R))); ! Result of proof
DD2D1DD2D13D2D1D3DD2DD2D13DD2D1311DD2D1D2DD2D12DD2D13DD2D1311
; ! 61 steps
(((P -> R) ^ (Q -> S)) -> ((P ^ Q) -> (R ^ S)))
; ! *3.47 (SD 203->199)
(~ ((P -> Q) -> ~ (R -> S)) -> (~ (P -> ~ R) -> ~ (Q -> ~ S)))
; ! Result of proof
DD2DD2D1DD2D12D2D1DD2D13DD2D1D2DD2DD2D13DD2D13111DD2DD2D12DD2D13DD2D1
DD22D1DD2D131DD2D11DD2D131D1D3DD2D1D3DD2DD2D13DD2D1311DD2D131DD2DD2D1
2DD2D13DD2D1DD22D11DD2D11DD2D131D1D3DD2D1D3DD2DD2D13DD2D13111
; ! 199 steps
(((P -> R) ^ (Q -> S)) -> ((P v Q) -> (R v S)))
; ! *3.48 (GB 245->241) (SD 241->171)
(~ ((P -> Q) -> ~ (R -> S)) -> ((~ P -> R) -> (~ Q -> S)))
; ! Result of proof
DD2D1D2D1DD2D13D2D1D3DD2DD2D13DD2D1311DD2DD2D12DD2D11DD2D12DD2D13DD2D
1DD22D1DD2D131DD2D11DD2D131DD2D1D2D1DD2D13D2D1D3DD2DD2D13DD2D1311DD2D
12DD2D13DD2D1DD22D11DD2D11DD2D131; ! 171 steps
((P -> Q) <-> (~ Q -> ~ P)); ! *4.1
~ (((P -> Q) -> (~ Q -> ~ P)) -> ~ ((~ R -> ~ S) -> (S -> R)))
; ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD2D1DD2D13DD2D1DD22D2DD2D13DD2D1311D2D1D3DD
2DD2D13DD2D13113; ! 85 steps
((P <-> Q) <-> (~ P <-> ~ Q)); ! *4.11
~ ((~ ((P -> Q) -> ~ (R -> S)) -> ~ ((~ S -> ~ R) -> ~ (~ Q -> ~
P))) -> ~ (~ ((~ T -> ~ U) -> ~ (~ V -> ~ W)) -> ~ ((W -> V) -> ~
(U -> T)))); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD2DD2D1DD2D13DD2D1D2DD2DD2D13DD2D13111DD2D1
DD2D1DD2D13DD2D1DD22D2DD2D13DD2D1311D2D1D3DD2DD2D13DD2D1311D3DD2D1D3D
D2DD2D13DD2D13111DD2D1DD2D1DD2D13DD2D1DD22D2DD2D13DD2D1311D2D1D3DD2DD
2D13DD2D1311D3DD2D1D3DD2DD2D13DD2D1311DD2D131DD2DD2D1DD2D13DD2D1D2DD2
DD2D13DD2D13111DD2D13D3DD2D1D3DD2DD2D13DD2D13111DD2D13D3DD2D1D3DD2DD2
D13DD2D1311DD2D131; ! 363 steps
((P <-> ~ Q) <-> (Q <-> ~ P)); ! *4.12
~ ((~ ((P -> ~ Q) -> ~ (~ R -> S)) -> ~ ((Q -> ~ P) -> ~ (~ S ->
R))) -> ~ (~ ((T -> ~ U) -> ~ (~ V -> W)) -> ~ ((U -> ~ T) -> ~ (~
W -> V)))); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD2DD2D1DD2D13DD2D1D2DD2DD2D13DD2D13111DD2D1
DD2D13DD2D1DD22D2DD2D13DD2D1311D3DD2D1D3DD2DD2D13DD2D1311DD2D131DD2D1
DD2D13D2D1D3DD2DD2D13DD2D1311D3DD2D1D3DD2DD2D13DD2D13111DD2DD2D1DD2D1
3DD2D1D2DD2DD2D13DD2D13111DD2D1DD2D13DD2D1DD22D2DD2D13DD2D1311D3DD2D1
D3DD2DD2D13DD2D1311DD2D131DD2D1DD2D13D2D1D3DD2DD2D13DD2D1311D3DD2D1D3
DD2DD2D13DD2D13111; ! 363 steps
(P <-> ~ ~ P); ! *4.13
~ ((P -> ~ ~ P) -> ~ (~ ~ Q -> Q)); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1D3DD2DD2D13DD2D1311DD2DD2D13DD2D1311
; ! 61 steps
(((P ^ Q) -> R) <-> ((P ^ ~ R) -> ~ Q))
; ! *4.14 (GB 325->321) (SD 321->263)
~ (((~ (P -> ~ Q) -> R) -> (~ (P -> ~ ~ R) -> ~ Q)) -> ~ ((~ (S -> ~
~ T) -> U) -> (~ (S -> U) -> T))); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD2D1DD2D13D2DD2D1DD2D1D2D1DD2D1D3DD2DD2D13D
D2D1311D2D1D3DD2DD2D13DD2D1311DD2D1DD2D1D2DD2D1211D2DD2D13DD2D1D2DD2D
D2D13DD2D13111DD2D13DD2D1311DD2D1DD2D13D2D1D3DD2DD2D13DD2D1311DD2DD2D
12DD2D11DD2D121D1DD2D1D2DD2D13DD2D1D2DD2DD2D13DD2D131111; ! 263 steps
(((P ^ Q) -> ~ R) <-> ((Q ^ R) -> ~ P))
; ! *4.15 (GB 281->277) (SD 277->233)
~ (((~ (P -> ~ Q) -> R) -> (~ (Q -> R) -> ~ P)) -> ~ ((~ (S -> T) ->
~ U) -> (~ (U -> ~ S) -> T))); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD2D1DD2D1DD2D13DD2D1DD22D2DD2D13DD2D1311D2D
1D3DD2DD2D13DD2D1311DD2DD2D12DD2D11DD2D121D1DD2D13DD2D1D2DD2DD2D13DD2
D13111DD2D1DD2DD2D12DD2DD2D121D1D3DD2D1D3DD2DD2D13DD2D1311DD2D131D1D3
DD2D1D3DD2DD2D13DD2D131113; ! 233 steps
(P <-> P); ! *4.2
~ ((P -> P) -> ~ (Q -> Q)); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD211DD211; ! 35 steps
((P <-> Q) <-> (Q <-> P)); ! *4.21 (GB 183->163)
~ ((~ (P -> ~ Q) -> ~ (Q -> ~ P)) -> ~ (~ (R -> ~ S) -> ~ (S -> ~
R))); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1D3DD2D1D3DD2DD2D13DD2D1311DD2D13DD2D1DD22D2D
D2D13DD2D131DD2D13DD2D131D3DD2D1D3DD2DD2D13DD2D1311DD2D13DD2D1DD22D2D
D2D13DD2D131DD2D13DD2D131; ! 163 steps
(((P <-> Q) ^ (Q <-> R)) -> (P <-> R)); ! *4.22 (GB 329->273)
(~ (~ ((P -> Q) -> ~ (R -> S)) -> ~ ~ ((Q -> T) -> ~ (U -> R))) -> ~
((P -> T) -> ~ (U -> S))); ! Result of proof
DD2DD2D1DD2D13DD2D1D2DD2DD2D13DD2D13111DD2DD2D1DD2D121D3DD2D1D3D3DD2D
1D3DD2DD2D13DD2D13DD2D13DD2D13111DD2D131D3DD2D1DD2D1D3DD2DD2D13DD2D13
11DD2D1D2DD2D1311DD2D131DD2DD2D1DD2D121D3DD2D1DD2D1D3DD2DD2D13DD2D131
1DD2D1D2DD2D13111D3DD2D1D3D3DD2D1D3DD2DD2D13DD2D13DD2D13DD2D131111
; ! 273 steps
(P <-> (P ^ P)); ! *4.24 (GB 91->89)
~ ((P -> ~ (P -> ~ P)) -> ~ (~ (Q -> ~ R) -> R)); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD2DD2D1D231DD2D1D2DD2DD2D13DD2D13111D3DD2D1
D3DD2DD2D13DD2D13111; ! 89 steps
(P <-> (P v P)); ! *4.25
~ ((P -> (Q -> P)) -> ~ ((~ R -> R) -> R)); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D11DD2DD2D13D2DD2D1311; ! 45 steps
((P ^ Q) <-> (Q ^ P)); ! *4.3 (GB 183->163)
~ ((~ (P -> ~ Q) -> ~ (Q -> ~ P)) -> ~ (~ (R -> ~ S) -> ~ (S -> ~
R))); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1D3DD2D1D3DD2DD2D13DD2D1311DD2D13DD2D1DD22D2D
D2D13DD2D131DD2D13DD2D131D3DD2D1D3DD2DD2D13DD2D1311DD2D13DD2D1DD22D2D
D2D13DD2D131DD2D13DD2D131; ! 163 steps
((P v Q) <-> (Q v P)); ! *4.31
~ (((~ P -> Q) -> (~ Q -> P)) -> ~ ((~ R -> S) -> (~ S -> R)))
; ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD2D13D2D1D3DD2DD2D13DD2D1311DD2D13D2D1D3DD2
DD2D13DD2D1311; ! 83 steps
(((P ^ Q) ^ R) <-> (P ^ (Q ^ R)))
; ! *4.32 (GB 359->355) (SD 355->313)
~ ((~ (~ (P -> ~ Q) -> R) -> ~ (P -> ~ ~ (Q -> R))) -> ~ (~ (S -> ~
~ (T -> U)) -> ~ (~ (S -> ~ T) -> U))); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1D3DD2D1D3DD2DD2D13DD2D1311DD2D1DD2D1DD2DD2D1
2DD2DD2D121D1D3DD2D1D3DD2DD2D13DD2D1311DD2D131D1D3DD2D1D3DD2DD2D13DD2
D13111D2D1DD2DD2D13DD2D1311DD2DD2D13DD2D1311D3DD2D1D3DD2DD2D13DD2D131
1DD2D1DD2D1D2D1D3DD2DD2D13DD2D1311DD2DD2D12DD2D11DD2D121D1DD2D13DD2D1
D2DD2DD2D13DD2D13111DD2DD2D13DD2D1311; ! 313 steps
(((P v Q) v R) <-> (P v (Q v R))); ! *4.33 (SD 207->199)
~ (((~ (P -> Q) -> R) -> (P -> (~ Q -> R))) -> ~ ((S -> (~ T -> U))
-> (~ (S -> T) -> U))); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD2DD2D12DD2D11DD2D121D1DD2D13DD2D1D2D1D3DD2
DD2D13DD2D1311DD2D1D2DD2DD2D13DD2D13111DD2D1DD2D13D2D1D3DD2DD2D13DD2D
1311DD2D1DD2D1DD22D11DD2D112D2D1DD2D13D2D1D3DD2DD2D13DD2D1311
; ! 199 steps
((P <-> Q) -> ((P ^ R) <-> (Q ^ R)))
; ! *4.36 (GB 311->291) (SF 291->271)
(~ ((P -> Q) -> ~ (R -> S)) -> ~ ((~ (P -> T) -> ~ (Q -> T)) -> ~ (~
(R -> U) -> ~ (S -> U)))); ! Result of proof
D3DDD22D2DD2D13DD2D131D1DD2D1D3DD2DD2D13DD2D1311DDDD2DD2D12DD2D11DD2D
12DD2D11DD2D121D1DD2D1D2DD2D1211D3DDD22D2DD2D13DD2D131D1DD2D1D3DD2DD2
D13DD2D1311DD2D1DD2D13D2D1D3DD2DD2D13DD2D1311DD2D1D2DD2D12DD2D13DD2D1
311DD2D1DD2D13D2D1D3DD2DD2D13DD2D1311DD2D1D2DD2D12DD2D13DD2D1311
; ! 271 steps
((P <-> Q) -> ((P v R) <-> (Q v R))); ! *4.37 (GB 311->307)
(~ ((P -> Q) -> ~ (R -> S)) -> ~ (((~ P -> T) -> (~ Q -> T)) -> ~
((~ R -> U) -> (~ S -> U)))); ! Result of proof
D3DDD22D2DD2D13DD2D131D1DD2D1D3DD2DD2D13DD2D1311DDDD2DD2D12DD2D11DD2D
12DD2D11DD2D121D1DD2D1D2DD2D1211D3DDD22D2DD2D13DD2D131D1DD2D1D3DD2DD2
D13DD2D1311DD2D1DD2D1D2DD2D1211DD2D1DD2D13DD2D1DD22D2DD2D13DD2D1311D2
D1D3DD2DD2D13DD2D1311DD2D1DD2D1D2DD2D1211DD2D1DD2D13DD2D1DD22D2DD2D13
DD2D1311D2D1D3DD2DD2D13DD2D1311; ! 307 steps
(((P <-> R) ^ (Q <-> S)) -> ((P ^ Q) <-> (R ^ S)))
; ! *4.38 (SD 585->529)
(~ (~ ((P -> Q) -> ~ (R -> S)) -> ~ ~ ((T -> U) -> ~ (V -> W))) -> ~
((~ (P -> ~ T) -> ~ (Q -> ~ U)) -> ~ (~ (R -> ~ V) -> ~ (S -> ~
W)))); ! Result of proof
DD2DD2D1DD2D13DD2D1D2DD2DD2D13DD2D13111DD2DD2D1DD2D12D2D1DD2D13DD2D1D
2DD2DD2D13DD2D13111DD2D1DD2DD2D121D1D3DD2D1D3DD2DD2D13DD2D1311DD2D131
D3DD2D1DD2D1D3DD2DD2D13DD2D1311DD2D1D2DD2D1311DD2D131DD2DD2D1DD2D121D
3DD2D1D3D3DD2D1D3DD2DD2D13DD2D13DD2D13DD2D13111DD2D131D1D3DD2D1D3DD2D
D2D13DD2D13111DD2DD2D1DD2D12D2D1DD2D13DD2D1D2DD2DD2D13DD2D13111DD2DD2
D1DD2D121D3DD2D1DD2D1D3DD2DD2D13DD2D1311DD2D1D2DD2D13111D1D3DD2D1D3DD
2DD2D13DD2D1311DD2D131DD2D1DD2DD2D121D1D3DD2D1D3DD2DD2D13DD2D13111D3D
D2D1D3D3DD2D1D3DD2DD2D13DD2D13DD2D13DD2D131111; ! 529 steps
(((P <-> R) ^ (Q <-> S)) -> ((P v Q) <-> (R v S)))
; ! *4.39 (GB 913->901) (RR 901->609) (SD 609->465)
(~ (~ ((P -> Q) -> ~ (R -> S)) -> ~ ~ ((T -> U) -> ~ (V -> W))) -> ~
(((~ P -> T) -> (~ Q -> U)) -> ~ ((~ R -> V) -> (~ S -> W))))
; ! Result of proof
DD2DD2D13DD2D1D2DD2DD2D13DD2D1311DD2D11DD2DD2D12DD2D11DD2D1DD2D121D3D
D2D1D3D3DD2D1D3DD2DD2D13DD2D13DD2D13DD2D13111DD2D131DD2D1D2DD2D121DD2
D11DD2D1DD2D1DD2D13DD2D1DD22D2DD2D13DD2D1311D2D1D3DD2DD2D13DD2D1311D3
DD2D1DD2D1D3DD2DD2D13DD2D1311DD2D1D2DD2D1311DD2D131DD2DD2D12DD2D11DD2
D1DD2D121D3DD2D1D3D3DD2D1D3DD2DD2D13DD2D13DD2D13DD2D131111DD2D1D2DD2D
121DD2D11DD2D1DD2D1DD2D13DD2D1DD22D2DD2D13DD2D1311D2D1D3DD2DD2D13DD2D
1311D3DD2D1DD2D1D3DD2DD2D13DD2D1311DD2D1D2DD2D13111; ! 465 steps
((P ^ (Q v R)) <-> ((P ^ Q) v (P ^ R)))
; ! *4.4 (SF 359->355) (SD 355->345)
~ ((~ (P -> ~ (Q -> R)) -> (~ ~ (P -> Q) -> ~ (P -> ~ R))) -> ~ ((~
~ (S -> T) -> ~ (S -> ~ U)) -> ~ (S -> ~ (T -> U))))
; ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD2D1D2DD2D1DD2D1DD2D13DD2D1DD22D2DD2D13DD2D
1311D2D1D3DD2DD2D13DD2D1311DD2D1DD2D12D2D1DD2D13DD2D1D2D1D3DD2DD2D13D
D2D1311DD2D1D2DD2DD2D13DD2D13111DD2DD2D13DD2D13111D3DD2D1DD2DD2D1DD2D
1D2DD2D13DD2D1D2DD2D13DD2DD2D13DD2D131111D2D1D3DD2D1D3DD2DD2D13DD2D13
11DD2D131D2D1D3DD2D1D3DD2DD2D13DD2D1311DD2D13DD2D131DD2DD2D13DD2D1311
; ! 345 steps
((P v (Q ^ R)) <-> ((P v Q) ^ (P v R)))
; ! *4.41 (SF 275->271) (SD 271->241)
~ (((P -> ~ (Q -> ~ R)) -> ~ ((P -> Q) -> ~ (P -> R))) -> ~ (~ ((S
-> T) -> ~ (S -> U)) -> (S -> ~ (T -> ~ U)))); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD2DD2D1DD2D13DD2D1D2DD2DD2D13DD2D13111D2D1D
3DD2D1D3DD2DD2D13DD2D1311DD2D131D2D1D3DD2D1D3DD2DD2D13DD2D13111DD2DD2
D1DD2D12D2D1DD2D13DD2D1D2DD2DD2D13DD2D13111D3DD2D1D3DD2DD2D13DD2D1311
DD2D131D3DD2D1D3DD2DD2D13DD2D13111; ! 241 steps
(P <-> ((P ^ Q) v (P ^ ~ Q))); ! *4.42 (GB 175->165)
~ ((P -> (~ ~ (P -> Q) -> ~ (P -> ~ Q))) -> ~ ((~ ~ (R -> S) -> ~ (R
-> T)) -> R)); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD2D1DD2D1DD22D2DD2D13DD2D1311DD2D1D2D2DD2D1
3DD2D1D2DD2DD2D13DD2D131111D3DD2DD2D1DD2D1D2DD2D13DD2D1D2DD2D13DD2DD2
D13DD2D131111DD2D131DD2D131; ! 165 steps
(P <-> ((P v Q) ^ (P v ~ Q))); ! *4.43
~ ((P -> ~ ((~ P -> Q) -> ~ (~ P -> R))) -> ~ (~ ((~ S -> T) -> ~ (~
S -> ~ T)) -> S)); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD2DD2D1DD2D13DD2D1D2DD2DD2D13DD2D13111DD2D1
D2DD2D1311DD2D1D2DD2D1311D3DD2D1D3DD2DD2D13DD2D1311DD2D1D2D2DD2D13DD2
D1D2DD2DD2D13DD2D131111; ! 161 steps
(P <-> (P v (P ^ Q))); ! *4.44
~ ((P -> (~ P -> Q)) -> ~ ((~ R -> ~ (R -> S)) -> R))
; ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD2D1D2DD2D1311DD2DD2D13D2DD2D1D2DD2D131DD2D
11DD2D1313; ! 79 steps
(P <-> (P ^ (P v Q))); ! *4.45 (GB 161->107)
~ ((P -> ~ (P -> ~ (~ P -> Q))) -> ~ (~ (R -> S) -> R))
; ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD2DD2D13DD2D1D2DD2DD2D13DD2D13111DD2D1D2DD2
D1311D3DD2D1D3DD2DD2D13DD2D1311DD2D131; ! 107 steps
((P ^ Q) <-> ~ (~ P v ~ Q)); ! *4.5 (GB 177->161) (SF 161->157)
~ ((~ (P -> Q) -> ~ (~ ~ P -> Q)) -> ~ (~ (~ ~ R -> S) -> ~ (R ->
S))); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1D3DD2D1D3DD2DD2D13DD2D1311DD2DD2D12DD2D13DD2
D131D1D3DD2DD2D13DD2D1311D3DD2D1D3DD2DD2D13DD2D1311DD2D1DD22D2DD2D13D
D2D131DD2D13DD2D131; ! 157 steps
(~ (P ^ Q) <-> (~ P v ~ Q)); ! *4.51 (GB 127->117)
~ ((~ ~ (P -> Q) -> (~ ~ P -> Q)) -> ~ ((~ ~ R -> S) -> ~ ~ (R ->
S))); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD2D1DD22D2DD2D13DD2D131DD2D13DD2D131DD2D1D3
DD2DD2D13DD2D1311DD2D1DD22D1D3DD2DD2D13DD2D13111; ! 117 steps
((P ^ ~ Q) <-> ~ (~ P v Q)); ! *4.52 (GB 231->219) (SD 219->209)
~ ((~ (P -> ~ ~ Q) -> ~ (~ ~ P -> Q)) -> ~ (~ (~ ~ R -> S) -> ~ (R
-> ~ ~ S))); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1D3DD2D1D3DD2DD2D13DD2D1311DD2D1DD2D13DD2D13D
2D1D3DD2DD2D13DD2D13DD2D13DD2D1311DD2DD2D13DD2D1311D3DD2D1D3DD2DD2D13
DD2D1311DD2D1D2D1DD2DD2D13DD2D1311DD2D1DD22D2DD2D13DD2D131DD2D13DD2D1
31; ! 209 steps
(~ (P ^ ~ Q) <-> (~ P v Q)); ! *4.53 (GB 181->169) (SD 169->159)
~ ((~ ~ (P -> ~ ~ Q) -> (~ ~ P -> Q)) -> ~ ((~ ~ R -> S) -> ~ ~ (R
-> ~ ~ S))); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD2D1D2D1DD2DD2D13DD2D1311DD2D1DD22D2DD2D13D
D2D131DD2D13DD2D131DD2D1D3DD2DD2D13DD2D1311DD2D13DD2D13D2D1D3DD2DD2D1
3DD2D13DD2D13DD2D1311; ! 159 steps
((~ P ^ Q) <-> ~ (P v ~ Q)); ! *4.54
~ ((P -> P) -> ~ (Q -> Q)); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD211DD211; ! 35 steps
(~ (~ P ^ Q) <-> (P v ~ Q)); ! *4.55
~ ((~ ~ P -> P) -> ~ (Q -> ~ ~ Q)); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD2DD2D13DD2D1311D3DD2DD2D13DD2D1311
; ! 61 steps
((~ P ^ ~ Q) <-> ~ (P v Q)); ! *4.56
~ ((~ (P -> ~ ~ Q) -> ~ (P -> Q)) -> ~ (~ (R -> S) -> ~ (R -> ~ ~
S))); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1D3DD2D1D3DD2DD2D13DD2D1311DD2D1D2D1D3DD2DD2D
13DD2D1311DD2DD2D13DD2D1311D3DD2D1D3DD2DD2D13DD2D1311DD2D1D2D1DD2DD2D
13DD2D1311DD2DD2D13DD2D1311; ! 165 steps
(~ (~ P ^ ~ Q) <-> (P v Q)); ! *4.57
~ ((~ ~ (P -> ~ ~ Q) -> (P -> Q)) -> ~ ((R -> S) -> ~ ~ (R -> ~ ~
S))); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD2D1D2D1DD2DD2D13DD2D1311DD2DD2D13DD2D1311D
D2D1D3DD2DD2D13DD2D1311D2D1D3DD2DD2D13DD2D1311; ! 115 steps
((P -> Q) <-> (~ P v Q)); ! *4.6
~ (((P -> Q) -> (~ ~ P -> Q)) -> ~ ((~ ~ R -> S) -> (R -> S)))
; ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD2D1DD22D2DD2D13DD2D1311DD2D1DD22D1D3DD2DD2
D13DD2D13111; ! 81 steps
(~ (P -> Q) <-> (P ^ ~ Q)); ! *4.61
~ ((~ (P -> Q) -> ~ (P -> ~ ~ Q)) -> ~ (~ (R -> ~ ~ S) -> ~ (R ->
S))); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1D3DD2D1D3DD2DD2D13DD2D1311DD2D1D2D1DD2DD2D13
DD2D1311DD2DD2D13DD2D1311D3DD2D1D3DD2DD2D13DD2D1311DD2D1D2D1D3DD2DD2D
13DD2D1311DD2DD2D13DD2D1311; ! 165 steps
((P -> ~ Q) <-> (~ P v ~ Q)); ! *4.62
~ (((P -> Q) -> (~ ~ P -> Q)) -> ~ ((~ ~ R -> S) -> (R -> S)))
; ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD2D1DD22D2DD2D13DD2D1311DD2D1DD22D1D3DD2DD2
D13DD2D13111; ! 81 steps
(~ (P -> ~ Q) <-> (P ^ Q)); ! *4.63
~ ((P -> P) -> ~ (Q -> Q)); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD211DD211; ! 35 steps
((~ P -> Q) <-> (P v Q)); ! *4.64
~ ((P -> P) -> ~ (Q -> Q)); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD211DD211; ! 35 steps
(~ (~ P -> Q) <-> (~ P ^ ~ Q)); ! *4.65
~ ((~ (P -> Q) -> ~ (P -> ~ ~ Q)) -> ~ (~ (R -> ~ ~ S) -> ~ (R ->
S))); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1D3DD2D1D3DD2DD2D13DD2D1311DD2D1D2D1DD2DD2D13
DD2D1311DD2DD2D13DD2D1311D3DD2D1D3DD2DD2D13DD2D1311DD2D1D2D1D3DD2DD2D
13DD2D1311DD2DD2D13DD2D1311; ! 165 steps
((~ P -> ~ Q) <-> (P v ~ Q)); ! *4.66
~ ((P -> P) -> ~ (Q -> Q)); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD211DD211; ! 35 steps
(~ (~ P -> ~ Q) <-> (~ P ^ Q)); ! *4.67
~ ((P -> P) -> ~ (Q -> Q)); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD211DD211; ! 35 steps
((P -> Q) <-> (P -> (P ^ Q))); ! *4.7
~ (((P -> Q) -> (P -> ~ (P -> ~ Q))) -> ~ ((R -> ~ (S -> ~ T)) -> (R
-> T))); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1D2DD2D13DD2D1D2DD2DD2D13DD2D13111D2D1D3DD2D1
D3DD2DD2D13DD2D13111; ! 89 steps
((P -> Q) <-> (P <-> (P ^ Q))); ! *4.71
~ (((P -> Q) -> ~ ((P -> ~ (P -> ~ Q)) -> ~ (~ (R -> S) -> R))) -> ~
(~ ((T -> ~ (U -> ~ V)) -> W) -> (T -> V))); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD2D1DD2DD2D13DD2D1D2DD2DD2D13DD2D13111D1D3D
D2D1D3DD2DD2D13DD2D1311DD2D131D2DD2D13DD2D1D2DD2DD2D13DD2D13111DD2D1D
2D1D3DD2D1D3DD2DD2D13DD2D13111D3DD2D1D3DD2DD2D13DD2D1311DD2D131
; ! 201 steps
((P -> Q) <-> (Q <-> (P v Q))); ! *4.72 (SD 195->193)
~ (((P -> Q) -> ~ ((R -> (S -> R)) -> ~ ((~ P -> Q) -> Q))) -> ~ (~
(T -> ~ ((~ U -> V) -> W)) -> (U -> W))); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD2D1D3DD2DD2DD2D13DD2D1311D11DD2D1D2D1DD2DD
2D13D2DD2D1311DD2D1DD2DD2D121D1DD2D13D2D1D3DD2DD2D13DD2D1311DD2D121DD
2DD2D12DD2D13DD2D1DD22D11DD2D11DD2D131D1DD2D1D2DD2D1311; ! 193 steps
(Q -> (P <-> (P ^ Q))); ! *4.73
(P -> ~ ((Q -> ~ (Q -> ~ P)) -> ~ (~ (R -> S) -> R)))
; ! Result of proof
DD2DD2D1DD2D13DD2D1D2DD2DD2D13DD2D13111DD2D1D2DD2D13DD2D1D2DD2DD2D13D
D2D131111D1D3DD2D1D3DD2DD2D13DD2D1311DD2D131; ! 113 steps
(~ P -> (Q <-> (P v Q))); ! *4.74
(P -> ~ ((Q -> (R -> Q)) -> ~ ((P -> S) -> S))); ! Result of proof
DD2D1D3DD2DD2DD2D13DD2D1311D11DD2D1D2DD2111; ! 43 steps
(((P -> Q) ^ (P -> R)) <-> (P -> (Q ^ R)))
; ! *4.76 (SF 275->271) (SD 271->241)
~ ((~ ((P -> Q) -> ~ (P -> R)) -> (P -> ~ (Q -> ~ R))) -> ~ ((S -> ~
(T -> ~ U)) -> ~ ((S -> T) -> ~ (S -> U)))); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD2DD2D1DD2D12D2D1DD2D13DD2D1D2DD2DD2D13DD2D
13111D3DD2D1D3DD2DD2D13DD2D1311DD2D131D3DD2D1D3DD2DD2D13DD2D13111DD2D
D2D1DD2D13DD2D1D2DD2DD2D13DD2D13111D2D1D3DD2D1D3DD2DD2D13DD2D1311DD2D
131D2D1D3DD2D1D3DD2DD2D13DD2D13111; ! 241 steps
(((Q -> P) ^ (R -> P)) <-> ((Q v R) -> P)); ! *4.77 (SD 375->265)
~ ((~ ((P -> Q) -> ~ (R -> Q)) -> ((~ P -> R) -> Q)) -> ~ (((~ S ->
T) -> U) -> ~ ((S -> U) -> ~ (T -> U)))); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD2D1D2D1DD2DD2D13D2DD2D1311DD2DD2D12DD2D11D
D2D12DD2D13DD2D1DD22D1DD2D131DD2D11DD2D131DD2D1D2D1DD2D13D2D1D3DD2DD2
D13DD2D1311DD2D12DD2D13DD2D1DD22D11DD2D11DD2D131DD2DD2D1DD2D13DD2D1D2
DD2DD2D13DD2D13111DD2D1DD22D1DD2D1D2DD2D13111DD2D1DD22D111
; ! 265 steps
(((P -> Q) v (P -> R)) <-> (P -> (Q v R))); ! *4.78 (GB 327->319)
~ (((~ (P -> Q) -> (P -> R)) -> (P -> (~ Q -> R))) -> ~ ((S -> (~ T
-> U)) -> (~ (V -> T) -> (S -> U)))); ! Result of proof
DD3DD2DD2DD2D13DD2D1311D1DD2D1DD2D1DD22D11DD2D11DD2D12DD2D1DD22D111DD
2D1DD2D1DD22D11DD2D112DD2D1DD2D1DD2D1D2D13DD2D1DD2D1DD22D11DD2D112DD2
D1D2D1D2DD2D1D2D2DD2D13DD2D1D2DD2DD2D13DD2D131111DD2D1DD22D11DD2D112D
2D1DD2D13D2D1D3DD2DD2D13DD2D1311DD2D1DD22D11DD2D112DD2D1DD2DD2D121D1D
D2D1DD2D13DD2D1DD22D1DD2D13DD2D1311DD2D1312; ! 319 steps
(((Q -> P) v (R -> P)) <-> ((Q ^ R) -> P)); ! *4.79 (GB 547->383)