参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为“根”。 除了“根”之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。
计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。
这道题目和 198.打家劫舍,213.打家劫舍II也是如出一辙,只不过这个换成了树。
如果对树的遍历不够熟悉的话,那本题就有难度了。
对于树的话,首先就要想到遍历方式,前中后序(深度优先搜索)还是层序遍历(广度优先搜索)。
本题一定是要后序遍历,因为通过递归函数的返回值来做下一步计算。
与198.打家劫舍,213.打家劫舍II一样,关键是要讨论当前节点抢还是不抢。
如果抢了当前节点,两个孩子就不能动,如果没抢当前节点,就可以考虑抢左右孩子(注意这里说的是“考虑”)
代码如下:
class Solution {
public:
int rob(TreeNode* root) {
if (root == NULL) return 0;
if (root->left == NULL && root->right == NULL) return root->val;
// 偷父节点
int val1 = root->val;
if (root->left) val1 += rob(root->left->left) + rob(root->left->right); // 跳过root->left,相当于不考虑左孩子了
if (root->right) val1 += rob(root->right->left) + rob(root->right->right); // 跳过root->right,相当于不考虑右孩子了
// 不偷父节点
int val2 = rob(root->left) + rob(root->right); // 考虑root的左右孩子
return max(val1, val2);
}
};
- 时间复杂度:$O(n^2)$,这个时间复杂度不太标准,也不容易准确化,例如越往下的节点重复计算次数就越多
- 空间复杂度:$O(\log n)$,算上递推系统栈的空间
当然以上代码超时了,这个递归的过程中其实是有重复计算了。
我们计算了root的四个孙子(左右孩子的孩子)为头结点的子树的情况,又计算了root的左右孩子为头结点的子树的情况,计算左右孩子的时候其实又把孙子计算了一遍。
所以可以使用一个map把计算过的结果保存一下,这样如果计算过孙子了,那么计算孩子的时候可以复用孙子节点的结果。
代码如下:
class Solution {
public:
unordered_map<TreeNode* , int> umap; // 记录计算过的结果
int rob(TreeNode* root) {
if (root == NULL) return 0;
if (root->left == NULL && root->right == NULL) return root->val;
if (umap[root]) return umap[root]; // 如果umap里已经有记录则直接返回
// 偷父节点
int val1 = root->val;
if (root->left) val1 += rob(root->left->left) + rob(root->left->right); // 跳过root->left
if (root->right) val1 += rob(root->right->left) + rob(root->right->right); // 跳过root->right
// 不偷父节点
int val2 = rob(root->left) + rob(root->right); // 考虑root的左右孩子
umap[root] = max(val1, val2); // umap记录一下结果
return max(val1, val2);
}
};
- 时间复杂度:$O(n)$
- 空间复杂度:$O(\log n)$,算上递推系统栈的空间
在上面两种方法,其实对一个节点 偷与不偷得到的最大金钱都没有做记录,而是需要实时计算。
而动态规划其实就是使用状态转移容器来记录状态的变化,这里可以使用一个长度为2的数组,记录当前节点偷与不偷所得到的的最大金钱。
这道题目算是树形dp的入门题目,因为是在树上进行状态转移,我们在讲解二叉树的时候说过递归三部曲,那么下面我以递归三部曲为框架,其中融合动规五部曲的内容来进行讲解。
- 确定递归函数的参数和返回值
这里我们要求一个节点 偷与不偷的两个状态所得到的金钱,那么返回值就是一个长度为2的数组。
参数为当前节点,代码如下:
vector<int> robTree(TreeNode* cur) {
其实这里的返回数组就是dp数组。
所以dp数组(dp table)以及下标的含义:下标为0记录不偷该节点所得到的的最大金钱,下标为1记录偷该节点所得到的的最大金钱。
所以本题dp数组就是一个长度为2的数组!
那么有同学可能疑惑,长度为2的数组怎么标记树中每个节点的状态呢?
别忘了在递归的过程中,系统栈会保存每一层递归的参数。
如果还不理解的话,就接着往下看,看到代码就理解了哈。
- 确定终止条件
在遍历的过程中,如果遇到空节点的话,很明显,无论偷还是不偷都是0,所以就返回
if (cur == NULL) return vector<int>{0, 0};
这也相当于dp数组的初始化
- 确定遍历顺序
首先明确的是使用后序遍历。 因为通过递归函数的返回值来做下一步计算。
通过递归左节点,得到左节点偷与不偷的金钱。
通过递归右节点,得到右节点偷与不偷的金钱。
代码如下:
// 下标0:不偷,下标1:偷
vector<int> left = robTree(cur->left); // 左
vector<int> right = robTree(cur->right); // 右
// 中
- 确定单层递归的逻辑
如果是偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0]; (如果对下标含义不理解就在回顾一下dp数组的含义)
如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,所以:val2 = max(left[0], left[1]) + max(right[0], right[1]);
最后当前节点的状态就是{val2, val1}; 即:{不偷当前节点得到的最大金钱,偷当前节点得到的最大金钱}
代码如下:
vector<int> left = robTree(cur->left); // 左
vector<int> right = robTree(cur->right); // 右
// 偷cur
int val1 = cur->val + left[0] + right[0];
// 不偷cur
int val2 = max(left[0], left[1]) + max(right[0], right[1]);
return {val2, val1};
- 举例推导dp数组
以示例1为例,dp数组状态如下:(注意用后序遍历的方式推导)
最后头结点就是 取下标0 和 下标1的最大值就是偷得的最大金钱。
递归三部曲与动规五部曲分析完毕,C++代码如下:
class Solution {
public:
int rob(TreeNode* root) {
vector<int> result = robTree(root);
return max(result[0], result[1]);
}
// 长度为2的数组,0:不偷,1:偷
vector<int> robTree(TreeNode* cur) {
if (cur == NULL) return vector<int>{0, 0};
vector<int> left = robTree(cur->left);
vector<int> right = robTree(cur->right);
// 偷cur,那么就不能偷左右节点。
int val1 = cur->val + left[0] + right[0];
// 不偷cur,那么可以偷也可以不偷左右节点,则取较大的情况
int val2 = max(left[0], left[1]) + max(right[0], right[1]);
return {val2, val1};
}
};
- 时间复杂度:O(n),每个节点只遍历了一次
- 空间复杂度:O(log n),算上递推系统栈的空间
这道题是树形DP的入门题目,通过这道题目大家应该也了解了,所谓树形DP就是在树上进行递归公式的推导。
所以树形DP也没有那么神秘!
只不过平时我们习惯了在一维数组或者二维数组上推导公式,一下子换成了树,就需要对树的遍历方式足够了解!
大家还记不记得我在讲解贪心专题的时候,讲到这道题目:贪心算法:我要监控二叉树!,这也是贪心算法在树上的应用。那我也可以把这个算法起一个名字,叫做树形贪心,哈哈哈
“树形贪心”词汇从此诞生,来自「代码随想录」
class Solution {
// 1.递归去偷,超时
public int rob(TreeNode root) {
if (root == null)
return 0;
int money = root.val;
if (root.left != null) {
money += rob(root.left.left) + rob(root.left.right);
}
if (root.right != null) {
money += rob(root.right.left) + rob(root.right.right);
}
return Math.max(money, rob(root.left) + rob(root.right));
}
// 2.递归去偷,记录状态
// 执行用时:3 ms , 在所有 Java 提交中击败了 56.24% 的用户
public int rob1(TreeNode root) {
Map<TreeNode, Integer> memo = new HashMap<>();
return robAction(root, memo);
}
int robAction(TreeNode root, Map<TreeNode, Integer> memo) {
if (root == null)
return 0;
if (memo.containsKey(root))
return memo.get(root);
int money = root.val;
if (root.left != null) {
money += robAction(root.left.left, memo) + robAction(root.left.right, memo);
}
if (root.right != null) {
money += robAction(root.right.left, memo) + robAction(root.right.right, memo);
}
int res = Math.max(money, robAction(root.left, memo) + robAction(root.right, memo));
memo.put(root, res);
return res;
}
// 3.状态标记递归
// 执行用时:0 ms , 在所有 Java 提交中击败了 100% 的用户
// 不偷:Max(左孩子不偷,左孩子偷) + Max(又孩子不偷,右孩子偷)
// root[0] = Math.max(rob(root.left)[0], rob(root.left)[1]) +
// Math.max(rob(root.right)[0], rob(root.right)[1])
// 偷:左孩子不偷+ 右孩子不偷 + 当前节点偷
// root[1] = rob(root.left)[0] + rob(root.right)[0] + root.val;
public int rob3(TreeNode root) {
int[] res = robAction1(root);
return Math.max(res[0], res[1]);
}
int[] robAction1(TreeNode root) {
int res[] = new int[2];
if (root == null)
return res;
int[] left = robAction1(root.left);
int[] right = robAction1(root.right);
res[0] = Math.max(left[0], left[1]) + Math.max(right[0], right[1]);
res[1] = root.val + left[0] + right[0];
return res;
}
}
暴力递归
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def rob(self, root: TreeNode) -> int:
if root is None:
return 0
if root.left is None and root.right is None:
return root.val
# 偷父节点
val1 = root.val
if root.left:
val1 += self.rob(root.left.left) + self.rob(root.left.right)
if root.right:
val1 += self.rob(root.right.left) + self.rob(root.right.right)
# 不偷父节点
val2 = self.rob(root.left) + self.rob(root.right)
return max(val1, val2)
记忆化递归
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
memory = {}
def rob(self, root: TreeNode) -> int:
if root is None:
return 0
if root.left is None and root.right is None:
return root.val
if self.memory.get(root) is not None:
return self.memory[root]
# 偷父节点
val1 = root.val
if root.left:
val1 += self.rob(root.left.left) + self.rob(root.left.right)
if root.right:
val1 += self.rob(root.right.left) + self.rob(root.right.right)
# 不偷父节点
val2 = self.rob(root.left) + self.rob(root.right)
self.memory[root] = max(val1, val2)
return max(val1, val2)
动态规划
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def rob(self, root: Optional[TreeNode]) -> int:
# dp数组(dp table)以及下标的含义:
# 1. 下标为 0 记录 **不偷该节点** 所得到的的最大金钱
# 2. 下标为 1 记录 **偷该节点** 所得到的的最大金钱
dp = self.traversal(root)
return max(dp)
# 要用后序遍历, 因为要通过递归函数的返回值来做下一步计算
def traversal(self, node):
# 递归终止条件,就是遇到了空节点,那肯定是不偷的
if not node:
return (0, 0)
left = self.traversal(node.left)
right = self.traversal(node.right)
# 不偷当前节点, 偷子节点
val_0 = max(left[0], left[1]) + max(right[0], right[1])
# 偷当前节点, 不偷子节点
val_1 = node.val + left[0] + right[0]
return (val_0, val_1)
动态规划
func rob(root *TreeNode) int {
res := robTree(root)
return max(res[0], res[1])
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func robTree(cur *TreeNode) []int {
if cur == nil {
return []int{0, 0}
}
// 后序遍历
left := robTree(cur.Left)
right := robTree(cur.Right)
// 考虑去偷当前的屋子
robCur := cur.Val + left[0] + right[0]
// 考虑不去偷当前的屋子
notRobCur := max(left[0], left[1]) + max(right[0], right[1])
// 注意顺序:0:不偷,1:去偷
return []int{notRobCur, robCur}
}
动态规划
const rob = root => {
// 后序遍历函数
const postOrder = node => {
// 递归出口
if (!node) return [0, 0];
// 遍历左子树
const left = postOrder(node.left);
// 遍历右子树
const right = postOrder(node.right);
// 不偷当前节点,左右子节点都可以偷或不偷,取最大值
const DoNot = Math.max(left[0], left[1]) + Math.max(right[0], right[1]);
// 偷当前节点,左右子节点只能不偷
const Do = node.val + left[0] + right[0];
// [不偷,偷]
return [DoNot, Do];
};
const res = postOrder(root);
// 返回最大值
return Math.max(...res);
};
记忆化后序遍历
const memory: Map<TreeNode, number> = new Map();
function rob(root: TreeNode | null): number {
if (root === null) return 0;
if (memory.has(root)) return memory.get(root);
// 不取当前节点
const res1: number = rob(root.left) + rob(root.right);
// 取当前节点
let res2: number = root.val;
if (root.left !== null) res2 += rob(root.left.left) + rob(root.left.right);
if (root.right !== null) res2 += rob(root.right.left) + rob(root.right.right);
const res: number = Math.max(res1, res2);
memory.set(root, res);
return res;
};
状态标记化后序遍历
function rob(root: TreeNode | null): number {
return Math.max(...robNode(root));
};
// [0]-不偷当前节点能获得的最大金额; [1]-偷~~
type MaxValueArr = [number, number];
function robNode(node: TreeNode | null): MaxValueArr {
if (node === null) return [0, 0];
const leftArr: MaxValueArr = robNode(node.left);
const rightArr: MaxValueArr = robNode(node.right);
// 不偷
const val1: number = Math.max(leftArr[0], leftArr[1]) +
Math.max(rightArr[0], rightArr[1]);
// 偷
const val2: number = leftArr[0] + rightArr[0] + node.val;
return [val1, val2];
}
// 打家劫舍Ⅲ 动态规划
// 时间复杂度O(n) 空间复杂度O(logn)
func rob(root *TreeNode) int {
dp := traversal(root)
return max(dp[0], dp[1])
}
func traversal(cur *TreeNode) []int {
if cur == nil {
return []int{0, 0}
}
dpL := traversal(cur.Left)
dpR := traversal(cur.Right)
val1 := cur.Val + dpL[0] + dpR[0] // 偷盗当前节点
val2 := max(dpL[0], dpL[1]) + max(dpR[0], dpR[1]) // 不偷盗当前节点
return []int{val2, val1}
}
func max(a, b int) int {
if a > b {
return a
}
return b
}