forked from karpathy/neuraltalk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
driver.py
315 lines (277 loc) · 16.3 KB
/
driver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import argparse
import json
import time
import datetime
import numpy as np
import code
import socket
import os
import sys
import cPickle as pickle
from imagernn.data_provider import getDataProvider
from imagernn.solver import Solver
from imagernn.imagernn_utils import decodeGenerator, eval_split
def preProBuildWordVocab(sentence_iterator, word_count_threshold):
# count up all word counts so that we can threshold
# this shouldnt be too expensive of an operation
print 'preprocessing word counts and creating vocab based on word count threshold %d' % (word_count_threshold, )
t0 = time.time()
word_counts = {}
nsents = 0
for sent in sentence_iterator:
nsents += 1
for w in sent['tokens']:
word_counts[w] = word_counts.get(w, 0) + 1
vocab = [w for w in word_counts if word_counts[w] >= word_count_threshold]
print 'filtered words from %d to %d in %.2fs' % (len(word_counts), len(vocab), time.time() - t0)
# with K distinct words:
# - there are K+1 possible inputs (START token and all the words)
# - there are K+1 possible outputs (END token and all the words)
# we use ixtoword to take predicted indeces and map them to words for output visualization
# we use wordtoix to take raw words and get their index in word vector matrix
ixtoword = {}
ixtoword[0] = '.' # period at the end of the sentence. make first dimension be end token
wordtoix = {}
wordtoix['#START#'] = 0 # make first vector be the start token
ix = 1
for w in vocab:
wordtoix[w] = ix
ixtoword[ix] = w
ix += 1
# compute bias vector, which is related to the log probability of the distribution
# of the labels (words) and how often they occur. We will use this vector to initialize
# the decoder weights, so that the loss function doesnt show a huge increase in performance
# very quickly (which is just the network learning this anyway, for the most part). This makes
# the visualizations of the cost function nicer because it doesn't look like a hockey stick.
# for example on Flickr8K, doing this brings down initial perplexity from ~2500 to ~170.
word_counts['.'] = nsents
bias_init_vector = np.array([1.0*word_counts[ixtoword[i]] for i in ixtoword])
bias_init_vector /= np.sum(bias_init_vector) # normalize to frequencies
bias_init_vector = np.log(bias_init_vector)
bias_init_vector -= np.max(bias_init_vector) # shift to nice numeric range
return wordtoix, ixtoword, bias_init_vector
def RNNGenCost(batch, model, params, misc):
""" cost function, returns cost and gradients for model """
regc = params['regc'] # regularization cost
BatchGenerator = decodeGenerator(params)
wordtoix = misc['wordtoix']
# forward the RNN on each image sentence pair
# the generator returns a list of matrices that have word probabilities
# and a list of cache objects that will be needed for backprop
Ys, gen_caches = BatchGenerator.forward(batch, model, params, misc, predict_mode = False)
# compute softmax costs for all generated sentences, and the gradients on top
loss_cost = 0.0
dYs = []
logppl = 0.0
logppln = 0
for i,pair in enumerate(batch):
img = pair['image']
# ground truth indeces for this sentence we expect to see
gtix = [ wordtoix[w] for w in pair['sentence']['tokens'] if w in wordtoix ]
gtix.append(0) # don't forget END token must be predicted in the end!
# fetch the predicted probabilities, as rows
Y = Ys[i]
maxes = np.amax(Y, axis=1, keepdims=True)
e = np.exp(Y - maxes) # for numerical stability shift into good numerical range
P = e / np.sum(e, axis=1, keepdims=True)
loss_cost += - np.sum(np.log(1e-20 + P[range(len(gtix)),gtix])) # note: add smoothing to not get infs
logppl += - np.sum(np.log2(1e-20 + P[range(len(gtix)),gtix])) # also accumulate log2 perplexities
logppln += len(gtix)
# lets be clever and optimize for speed here to derive the gradient in place quickly
for iy,y in enumerate(gtix):
P[iy,y] -= 1 # softmax derivatives are pretty simple
dYs.append(P)
# backprop the RNN
grads = BatchGenerator.backward(dYs, gen_caches)
# add L2 regularization cost and gradients
reg_cost = 0.0
if regc > 0:
for p in misc['regularize']:
mat = model[p]
reg_cost += 0.5 * regc * np.sum(mat * mat)
grads[p] += regc * mat
# normalize the cost and gradient by the batch size
batch_size = len(batch)
reg_cost /= batch_size
loss_cost /= batch_size
for k in grads: grads[k] /= batch_size
# return output in json
out = {}
out['cost'] = {'reg_cost' : reg_cost, 'loss_cost' : loss_cost, 'total_cost' : loss_cost + reg_cost}
out['grad'] = grads
out['stats'] = { 'ppl2' : 2 ** (logppl / logppln)}
return out
def main(params):
batch_size = params['batch_size']
dataset = params['dataset']
word_count_threshold = params['word_count_threshold']
do_grad_check = params['do_grad_check']
max_epochs = params['max_epochs']
host = socket.gethostname() # get computer hostname
# fetch the data provider
dp = getDataProvider(dataset)
misc = {} # stores various misc items that need to be passed around the framework
# go over all training sentences and find the vocabulary we want to use, i.e. the words that occur
# at least word_count_threshold number of times
misc['wordtoix'], misc['ixtoword'], bias_init_vector = preProBuildWordVocab(dp.iterSentences('train'), word_count_threshold)
# delegate the initialization of the model to the Generator class
BatchGenerator = decodeGenerator(params)
init_struct = BatchGenerator.init(params, misc)
model, misc['update'], misc['regularize'] = (init_struct['model'], init_struct['update'], init_struct['regularize'])
# force overwrite here. This is a bit of a hack, not happy about it
model['bd'] = bias_init_vector.reshape(1, bias_init_vector.size)
print 'model init done.'
print 'model has keys: ' + ', '.join(model.keys())
print 'updating: ' + ', '.join( '%s [%dx%d]' % (k, model[k].shape[0], model[k].shape[1]) for k in misc['update'])
print 'updating: ' + ', '.join( '%s [%dx%d]' % (k, model[k].shape[0], model[k].shape[1]) for k in misc['regularize'])
print 'number of learnable parameters total: %d' % (sum(model[k].shape[0] * model[k].shape[1] for k in misc['update']), )
if params.get('init_model_from', ''):
# load checkpoint
checkpoint = pickle.load(open(params['init_model_from'], 'rb'))
model = checkpoint['model'] # overwrite the model
# initialize the Solver and the cost function
solver = Solver()
def costfun(batch, model):
# wrap the cost function to abstract some things away from the Solver
return RNNGenCost(batch, model, params, misc)
# calculate how many iterations we need
num_sentences_total = dp.getSplitSize('train', ofwhat = 'sentences')
num_iters_one_epoch = num_sentences_total / batch_size
max_iters = max_epochs * num_iters_one_epoch
eval_period_in_epochs = params['eval_period']
eval_period_in_iters = max(1, int(num_iters_one_epoch * eval_period_in_epochs))
abort = False
top_val_ppl2 = -1
smooth_train_ppl2 = len(misc['ixtoword']) # initially size of dictionary of confusion
val_ppl2 = len(misc['ixtoword'])
last_status_write_time = 0 # for writing worker job status reports
json_worker_status = {}
json_worker_status['params'] = params
json_worker_status['history'] = []
for it in xrange(max_iters):
if abort: break
t0 = time.time()
# fetch a batch of data
batch = [dp.sampleImageSentencePair() for i in xrange(batch_size)]
# evaluate cost, gradient and perform parameter update
step_struct = solver.step(batch, model, costfun, **params)
cost = step_struct['cost']
dt = time.time() - t0
# print training statistics
train_ppl2 = step_struct['stats']['ppl2']
smooth_train_ppl2 = 0.99 * smooth_train_ppl2 + 0.01 * train_ppl2 # smooth exponentially decaying moving average
if it == 0: smooth_train_ppl2 = train_ppl2 # start out where we start out
epoch = it * 1.0 / num_iters_one_epoch
print '%d/%d batch done in %.3fs. at epoch %.2f. loss cost = %f, reg cost = %f, ppl2 = %.2f (smooth %.2f)' \
% (it, max_iters, dt, epoch, cost['loss_cost'], cost['reg_cost'], \
train_ppl2, smooth_train_ppl2)
# perform gradient check if desired, with a bit of a burnin time (10 iterations)
if it == 10 and do_grad_check:
print 'disabling dropout for gradient check...'
params['drop_prob_encoder'] = 0
params['drop_prob_decoder'] = 0
solver.gradCheck(batch, model, costfun)
print 'done gradcheck, exitting.'
sys.exit() # hmmm. probably should exit here
# detect if loss is exploding and kill the job if so
total_cost = cost['total_cost']
if it == 0:
total_cost0 = total_cost # store this initial cost
if total_cost > total_cost0 * 2:
print 'Aboring, cost seems to be exploding. Run gradcheck? Lower the learning rate?'
abort = True # set the abort flag, we'll break out
# logging: write JSON files for visual inspection of the training
tnow = time.time()
if tnow > last_status_write_time + 60*1: # every now and then lets write a report
last_status_write_time = tnow
jstatus = {}
jstatus['time'] = datetime.datetime.now().isoformat()
jstatus['iter'] = (it, max_iters)
jstatus['epoch'] = (epoch, max_epochs)
jstatus['time_per_batch'] = dt
jstatus['smooth_train_ppl2'] = smooth_train_ppl2
jstatus['val_ppl2'] = val_ppl2 # just write the last available one
jstatus['train_ppl2'] = train_ppl2
json_worker_status['history'].append(jstatus)
status_file = os.path.join(params['worker_status_output_directory'], host + '_status.json')
try:
json.dump(json_worker_status, open(status_file, 'w'))
except Exception, e: # todo be more clever here
print 'tried to write worker status into %s but got error:' % (status_file, )
print e
# perform perplexity evaluation on the validation set and save a model checkpoint if it's good
is_last_iter = (it+1) == max_iters
if (((it+1) % eval_period_in_iters) == 0 and it < max_iters - 5) or is_last_iter:
val_ppl2 = eval_split('val', dp, model, params, misc) # perform the evaluation on VAL set
print 'validation perplexity = %f' % (val_ppl2, )
# abort training if the perplexity is no good
min_ppl_or_abort = params['min_ppl_or_abort']
if val_ppl2 > min_ppl_or_abort and min_ppl_or_abort > 0:
print 'aborting job because validation perplexity %f < %f' % (val_ppl2, min_ppl_or_abort)
abort = True # abort the job
write_checkpoint_ppl_threshold = params['write_checkpoint_ppl_threshold']
if val_ppl2 < top_val_ppl2 or top_val_ppl2 < 0:
if val_ppl2 < write_checkpoint_ppl_threshold or write_checkpoint_ppl_threshold < 0:
# if we beat a previous record or if this is the first time
# AND we also beat the user-defined threshold or it doesnt exist
top_val_ppl2 = val_ppl2
filename = 'model_checkpoint_%s_%s_%s_%.2f.p' % (dataset, host, params['fappend'], val_ppl2)
filepath = os.path.join(params['checkpoint_output_directory'], filename)
checkpoint = {}
checkpoint['it'] = it
checkpoint['epoch'] = epoch
checkpoint['model'] = model
checkpoint['params'] = params
checkpoint['perplexity'] = val_ppl2
checkpoint['wordtoix'] = misc['wordtoix']
checkpoint['ixtoword'] = misc['ixtoword']
try:
pickle.dump(checkpoint, open(filepath, "wb"))
print 'saved checkpoint in %s' % (filepath, )
except Exception, e: # todo be more clever here
print 'tried to write checkpoint into %s but got error: ' % (filepat, )
print e
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# global setup settings, and checkpoints
parser.add_argument('-d', '--dataset', dest='dataset', default='flickr8k', help='dataset: flickr8k/flickr30k')
parser.add_argument('-a', '--do_grad_check', dest='do_grad_check', type=int, default=0, help='perform gradcheck? program will block for visual inspection and will need manual user input')
parser.add_argument('--fappend', dest='fappend', type=str, default='baseline', help='append this string to checkpoint filenames')
parser.add_argument('-o', '--checkpoint_output_directory', dest='checkpoint_output_directory', type=str, default='cv/', help='output directory to write checkpoints to')
parser.add_argument('--worker_status_output_directory', dest='worker_status_output_directory', type=str, default='status/', help='directory to write worker status JSON blobs to')
parser.add_argument('--write_checkpoint_ppl_threshold', dest='write_checkpoint_ppl_threshold', type=float, default=-1, help='ppl threshold above which we dont bother writing a checkpoint to save space')
parser.add_argument('--init_model_from', dest='init_model_from', type=str, default='', help='initialize the model parameters from some specific checkpoint?')
# model parameters
parser.add_argument('--generator', dest='generator', type=str, default='lstm', help='generator to use')
parser.add_argument('--image_encoding_size', dest='image_encoding_size', type=int, default=256, help='size of the image encoding')
parser.add_argument('--word_encoding_size', dest='word_encoding_size', type=int, default=256, help='size of word encoding')
parser.add_argument('--hidden_size', dest='hidden_size', type=int, default=256, help='size of hidden layer in generator RNNs')
# lstm-specific params
parser.add_argument('--tanhC_version', dest='tanhC_version', type=int, default=0, help='use tanh version of LSTM?')
# rnn-specific params
parser.add_argument('--rnn_relu_encoders', dest='rnn_relu_encoders', type=int, default=0, help='relu encoders before going to RNN?')
parser.add_argument('--rnn_feed_once', dest='rnn_feed_once', type=int, default=0, help='feed image to the rnn only single time?')
# optimization parameters
parser.add_argument('-c', '--regc', dest='regc', type=float, default=1e-8, help='regularization strength')
parser.add_argument('-m', '--max_epochs', dest='max_epochs', type=int, default=50, help='number of epochs to train for')
parser.add_argument('--solver', dest='solver', type=str, default='rmsprop', help='solver type: vanilla/adagrad/adadelta/rmsprop')
parser.add_argument('--momentum', dest='momentum', type=float, default=0.0, help='momentum for vanilla sgd')
parser.add_argument('--decay_rate', dest='decay_rate', type=float, default=0.999, help='decay rate for adadelta/rmsprop')
parser.add_argument('--smooth_eps', dest='smooth_eps', type=float, default=1e-8, help='epsilon smoothing for rmsprop/adagrad/adadelta')
parser.add_argument('-l', '--learning_rate', dest='learning_rate', type=float, default=1e-3, help='solver learning rate')
parser.add_argument('-b', '--batch_size', dest='batch_size', type=int, default=100, help='batch size')
parser.add_argument('--grad_clip', dest='grad_clip', type=float, default=5, help='clip gradients (normalized by batch size)? elementwise. if positive, at what threshold?')
parser.add_argument('--drop_prob_encoder', dest='drop_prob_encoder', type=float, default=0.5, help='what dropout to apply right after the encoder to an RNN/LSTM')
parser.add_argument('--drop_prob_decoder', dest='drop_prob_decoder', type=float, default=0.5, help='what dropout to apply right before the decoder in an RNN/LSTM')
# data preprocessing parameters
parser.add_argument('--word_count_threshold', dest='word_count_threshold', type=int, default=5, help='if a word occurs less than this number of times in training data, it is discarded')
# evaluation parameters
parser.add_argument('-p', '--eval_period', dest='eval_period', type=float, default=1.0, help='in units of epochs, how often do we evaluate on val set?')
parser.add_argument('--eval_batch_size', dest='eval_batch_size', type=int, default=100, help='for faster validation performance evaluation, what batch size to use on val img/sentences?')
parser.add_argument('--eval_max_images', dest='eval_max_images', type=int, default=-1, help='for efficiency we can use a smaller number of images to get validation error')
parser.add_argument('--min_ppl_or_abort', dest='min_ppl_or_abort', type=float , default=-1, help='if validation perplexity is below this threshold the job will abort')
args = parser.parse_args()
params = vars(args) # convert to ordinary dict
print 'parsed parameters:'
print json.dumps(params, indent = 2)
main(params)