Skip to content

Latest commit

 

History

History
44 lines (36 loc) · 2.18 KB

README.md

File metadata and controls

44 lines (36 loc) · 2.18 KB

HyperTab

Open In Colab

HyperTab is a hypernetwork-based classifier for small tabular datasets.

It's especially efficient when the number of samples is smaller than 500. The smaller the dataset, the larger is the advantage of HyperTab over other algorithms.

Installation

pip install hypertab

Usage

from hypertab import HyperTabClassifier
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"

clf = HyperTabClassifier(0.5, device=DEVICE, test_nodes=100, epochs=10, hidden_dims=5)
clf.fit(X, y)
clf.predict(X)

Performance

Dataset XGBoost DN RF HyperTab Node
Wisconsin Breast Cancer 93.85 95.58 95.96 97.58 96.19
Connectionist Bench 83.52 79.02 83.50 87.09 85.61
Dermatology 96.05 97.80 97.21 97.82 97.99
Glass 94.74 46.96 97.02 98.36 44.90
Promoter 81.88 78.91 85.94 89.06 83.75
Ionosphere 90.67 93.43 92.43 94.52 91.03
Libras 74.38 81.54 77.42 85.22 82.72
Lymphography 85.94 85.74 87.19 83.90 83.93
Parkinsons 86.35 74.96 86.84 95.27 80.20
Zoo 92.86 72.62 92.62 95.27 89.05
Hill-Valley without noise 65.53 56.39 57.33 70.59 52.71
Hill-Valley with noise 58.45 56.06 55.66 67.56 51.09
OpenML 1086 60.61 33.33 51.24 76.60 68.39
Heart 79.17 82.62 81.10 83.33 82.38
Mean rank 3.50 3.78 3.07 1.35 3.29