forked from StartleStars/DeepMindBreak
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ops.py
executable file
·233 lines (173 loc) · 7.77 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import tensorflow as tf
import tensorflow.contrib.layers as layers
import numpy as np
import random as rr
import math as mt
import cv2
from scipy import misc
def instance_norm(input, name="instance_norm"):
with tf.variable_scope(name):
depth = input.get_shape()[3]
scale = tf.get_variable("scale", [depth], initializer=tf.random_normal_initializer(1.0, 0.02, dtype=tf.float32))
offset = tf.get_variable("offset", [depth], initializer=tf.constant_initializer(0.0))
mean, variance = tf.nn.moments(input, axes=[1,2], keep_dims=True)
epsilon = 1e-5
inv = tf.rsqrt(variance + epsilon)
normalized = (input-mean)*inv
return scale*normalized + offset
def make_sq_mask(size, m_size, batch_size):
start_x = rr.randint(0, size - m_size-1)
start_y = rr.randint(0, size - m_size-1)
temp = np.ones([batch_size, size, size, 3])
temp[:, start_x:start_x + m_size, start_y:start_y + m_size, 0:3] *= 0
return temp, start_x, start_y
def softmax(input):
k = tf.exp(input - 3)
k = tf.reduce_sum(k, 3, True)
# k = k - num * tf.ones_like(k)
ouput = tf.exp(input - 3) / k
return ouput
def reduce_var(x, axis=None, keepdims=False):
"""Variance of a tensor, alongside the specified axis.
# Arguments
x: A tensor or variable.
axis: An integer, the axis to compute the variance.
keepdims: A boolean, whether to keep the dimensions or not.
If `keepdims` is `False`, the rank of the tensor is reduced
by 1. If `keepdims` is `True`,
the reduced dimension is retained with length 1.
# Returns
A tensor with the variance of elements of `x`.
"""
m = tf.reduce_mean(x, axis=axis, keepdims=True)
devs_squared = tf.square(x - m)
return tf.reduce_mean(devs_squared, axis=axis, keepdims=keepdims)
def reduce_std(x, axis=None, keepdims=False):
"""Standard deviation of a tensor, alongside the specified axis.
# Arguments
x: A tensor or variable.
axis: An integer, the axis to compute the standard deviation.
keepdims: A boolean, whether to keep the dimensions or not.
If `keepdims` is `False`, the rank of the tensor is reduced
by 1. If `keepdims` is `True`,
the reduced dimension is retained with length 1.
# Returns
A tensor with the standard deviation of elements of `x`.
"""
return tf.sqrt(reduce_var(x, axis=axis, keepdims=keepdims))
def l2_norm(v, eps=1e-12):
return v / (tf.reduce_sum(v ** 2) ** 0.5 + eps)
def ff_mask(size, b_zise, maxLen, maxWid, maxAng, maxNum, maxVer, minLen = 20, minWid = 15, minVer = 5):
mask = np.ones((b_zise, size, size, 3))
num = rr.randint(3, maxNum)
for i in range(num):
startX = rr.randint(0, size)
startY = rr.randint(0, size)
numVer = rr.randint(minVer, maxVer)
width = rr.randint(minWid, maxWid)
for j in range(numVer):
angle = rr.uniform(-maxAng, maxAng)
length = rr.randint(minLen, maxLen)
endX = min(size-1, max(0, int(startX + length * mt.sin(angle))))
endY = min(size-1, max(0, int(startY + length * mt.cos(angle))))
if endX >= startX:
lowx = startX
highx = endX
else:
lowx = endX
highx = startX
if endY >= startY:
lowy = startY
highy = endY
else:
lowy = endY
highy = startY
if abs(startY-endY) + abs(startX - endX) != 0:
wlx = max(0, lowx-int(abs(width * mt.cos(angle))))
whx = min(size - 1, highx+1 + int(abs(width * mt.cos(angle))))
wly = max(0, lowy - int(abs(width * mt.sin(angle))))
why = min(size - 1, highy+1 + int(abs(width * mt.sin(angle))))
for x in range(wlx, whx):
for y in range(wly, why):
d = abs((endY-startY)*x - (endX -startX)*y - endY*startX + startY*endX) / mt.sqrt((startY-endY)**2 + (startX -endX)**2)
if d <= width:
mask[:, x, y, :] = 0
wlx = max(0, lowx-width)
whx = min(size - 1, highx+width+1)
wly = max(0, lowy - width)
why = min(size - 1, highy + width + 1)
for x2 in range(wlx, whx):
for y2 in range(wly, why):
d1 = (startX - x2) ** 2 + (startY - y2) ** 2
d2 = (endX - x2) ** 2 + (endY - y2) ** 2
if np.sqrt(d1) <= width:
mask[:, x2, y2, :] = 0
if np.sqrt(d2) <= width:
mask[:, x2, y2, :] = 0
startX = endX
startY = endY
return mask
def ff_mask_batch(size, b_size, maxLen, maxWid, maxAng, maxNum, maxVer, minLen = 20, minWid = 15, minVer = 5):
mask = None
temp = ff_mask(size, 1, maxLen, maxWid, maxAng, maxNum, maxVer, minLen=minLen, minWid=minWid, minVer=minVer)
temp = temp[0]
for ib in range(b_size):
if ib == 0:
mask = np.expand_dims(temp, 0)
else:
mask = np.concatenate((mask, np.expand_dims(temp, 0)), 0)
temp = cv2.rotate(temp, cv2.ROTATE_90_CLOCKWISE)
if ib == 3:
temp = cv2.flip(temp, 0)
return mask
def spectral_norm(w, name, iteration=1):
w_shape = w.shape.as_list()
w = tf.reshape(w, [-1, w_shape[-1]])
u = tf.get_variable(name+"u", [1, w_shape[-1]], initializer=tf.truncated_normal_initializer(), trainable=False)
u_hat = u
v_hat = None
for i in range(iteration):
"""
power iteration
Usually iteration = 1 will be enough
"""
v_ = tf.matmul(u_hat, tf.transpose(w))
v_hat = l2_norm(v_)
u_ = tf.matmul(v_hat, w)
u_hat = l2_norm(u_)
sigma = tf.matmul(tf.matmul(v_hat, w), tf.transpose(u_hat))
w_norm = w / sigma
with tf.control_dependencies([u.assign(u_hat)]):
w_norm = tf.reshape(w_norm, w_shape)
return w_norm
def convolution_SN(tensor, output_dim, kernel_size, stride, name):
_, h, w, c = [i.value for i in tensor.get_shape()]
w = tf.get_variable(name=name + 'w', shape=[kernel_size, kernel_size, c, output_dim], initializer=layers.xavier_initializer())
b = tf.get_variable(name=name + 'b', shape=[output_dim], initializer=tf.constant_initializer(0.0))
output = tf.nn.conv2d(tensor, filter=spectral_norm(w, name=name + 'w'), strides=[1, stride, stride, 1], padding='SAME') + b
return output
def dense_SN(tensor, output_dim, name):
_, h, w, c = [i.value for i in tensor.get_shape()]
w = tf.get_variable(name=name + 'w', shape=[h, w, c, output_dim], initializer=layers.xavier_initializer())
b = tf.get_variable(name=name + 'b', shape=[output_dim], initializer=tf.constant_initializer(0.0))
output = tf.nn.conv2d(tensor, filter=spectral_norm(w, name=name + 'w'), strides=[1, 1, 1, 1], padding='VALID') + b
return output
def dense_RED_SN(tensor, name):
sn_w = None
_, h, w, c = [i.value for i in tensor.get_shape()]
h = int(h)
w = int(w)
c = int(c)
weight = tf.get_variable(name=name + '_w', shape=[h*w, 1, c, 1], initializer=layers.xavier_initializer())
b = tf.get_variable(name=name + '_b', shape=[1, h, w, 1], initializer=tf.constant_initializer(0.0))
for it in range(h*w):
w_pixel = weight[it:it+1, :, :, :]
sn_w_pixel = spectral_norm(w_pixel, name=name + 'w_%d' %it)
if it == 0:
sn_w = sn_w_pixel
else:
sn_w = tf.concat([sn_w, sn_w_pixel], axis=0)
w_rs = tf.reshape(sn_w, [h, w, c, 1])
w_rs_t = tf.transpose(w_rs, [3, 0, 1, 2])
output_RED = tf.reduce_sum(tensor*w_rs_t + b, axis=3, keepdims=True)
return output_RED