From dae36114f8f893c7d969996b5777a76ed874a12b Mon Sep 17 00:00:00 2001 From: wwakabobik Date: Fri, 24 Nov 2023 16:00:26 +0100 Subject: [PATCH] Bump to 0.0.10 --- CHANGELOG.md | 6 + src/leonardo_api/leonardo_async.py | 101 ++++--- src/leonardo_api/leonardo_sync.py | 418 +++++++++++++++++++---------- 3 files changed, 347 insertions(+), 178 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index f7fa1ef..cb7d956 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -57,3 +57,9 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0 ### Fixed - Fixed headers update methods (possible async bug fix) + +## [0.0.10] - 2023-11-24 + +### Fixed +- Fixed image upload methods (headers should be purged before poking s3) +- Fixed session headers update to much more generic diff --git a/src/leonardo_api/leonardo_async.py b/src/leonardo_api/leonardo_async.py index 875e9ac..5ae4ae3 100644 --- a/src/leonardo_api/leonardo_async.py +++ b/src/leonardo_api/leonardo_async.py @@ -17,9 +17,9 @@ import os from typing import Optional -import asyncio import aiofiles import aiohttp +import asyncio from .logger_config import setup_logger @@ -33,7 +33,7 @@ class Leonardo: logger (logging.Logger, optional): default logger. Default will be initialized if not provided. """ - def __init__(self, auth_token: str, logger: Optional[logging.Logger] = None): + def __init__(self, auth_token: str, logger: Optional[logging.Logger] = None) -> None: """ Constructs all the necessary attributes for the Leonardo object. @@ -46,7 +46,7 @@ def __init__(self, auth_token: str, logger: Optional[logging.Logger] = None): self.___logger = logger if logger else setup_logger("Leonardo", "leonardo_async.log") self.___logger.debug("Leonardo init complete") - async def ___get_client_session(self, request_type: str = "get", empty: bool = False): + async def ___get_client_session(self, request_type: str = "get", empty: bool = False) -> aiohttp.ClientSession: """ This method returns aiohttp.ClientSession with headers. @@ -66,7 +66,7 @@ async def ___get_client_session(self, request_type: str = "get", empty: bool = F headers.update({"accept": "application/json", "content-type": "application/json"}) return aiohttp.ClientSession(headers=headers) - async def get_user_info(self): + async def get_user_info(self) -> dict: """ This endpoint will return your user information, including your user ID. @@ -114,7 +114,7 @@ async def post_generations( prompt_magic: bool = True, control_net: bool = False, control_net_type: Optional[str] = None, - ): + ) -> str: """ This endpoint will generate images. @@ -201,7 +201,7 @@ async def post_generations( await session.close() raise error - async def get_single_generation(self, generation_id: str): + async def get_single_generation(self, generation_id: str) -> dict: """ This endpoint will provide information about a specific generation. @@ -229,14 +229,14 @@ async def get_single_generation(self, generation_id: str): await session.close() raise - async def delete_single_generation(self, generation_id: str): + async def delete_single_generation(self, generation_id: str) -> aiohttp.ClientResponse: """ This endpoint deletes a specific generation. :param generation_id: The ID of the generation to delete. :type generation_id: str :return: generation info - :rtype: dict + :rtype: aiohttp.ClientResponse Raises: Exception: if error occurred while delete single generation @@ -256,13 +256,16 @@ async def delete_single_generation(self, generation_id: str): await session.close() raise error - async def get_generations_by_user(self, user_id: str, offset: int = 0, limit: int = 10): + async def get_generations_by_user(self, user_id: str, offset: int = 0, limit: int = 10) -> dict: """ This endpoint returns all generations by a specific user. :param user_id: The ID of the user. + :type user_id: str :param offset: The offset for pagination. + :type offset: int :param limit: The limit for pagination. + :type limit: int :return: generations :rtype: dict @@ -286,7 +289,7 @@ async def get_generations_by_user(self, user_id: str, offset: int = 0, limit: in await session.close() raise error - async def upload_init_image(self, file_path: str): # pylint: disable=too-many-locals + async def upload_init_image(self, file_path: str) -> str: # pylint: disable=too-many-locals """ This endpoint returns pre-signed details to upload an init image to S3. @@ -337,7 +340,7 @@ async def upload_init_image(self, file_path: str): # pylint: disable=too-many-l await session.close() raise error - async def get_single_init_image(self, image_id: str): + async def get_single_init_image(self, image_id: str) -> dict: """ This endpoint will return a single init image. @@ -365,12 +368,14 @@ async def get_single_init_image(self, image_id: str): await session.close() raise - async def delete_init_image(self, image_id: str): + async def delete_init_image(self, image_id: str) -> aiohttp.ClientResponse: """ This endpoint deletes an init image. :param image_id: The ID of the init image to delete. :type image_id: str + :return: init image + :rtype: aiohttp.ClientResponse Raises: Exception: if error occurred while delete init image @@ -390,7 +395,7 @@ async def delete_init_image(self, image_id: str): await session.close() raise error - async def create_upscale(self, image_id: str): + async def create_upscale(self, image_id: str) -> dict: """ This endpoint will create an upscale for the provided image ID. @@ -419,7 +424,7 @@ async def create_upscale(self, image_id: str): await session.close() raise error - async def get_variation_by_id(self, generation_id: str): + async def get_variation_by_id(self, generation_id: str) -> dict: """ This endpoint will get the variation by ID. @@ -447,14 +452,16 @@ async def get_variation_by_id(self, generation_id: str): await session.close() raise error - async def create_dataset(self, name: str, description: Optional[str] = None): + async def create_dataset(self, name: str, description: Optional[str] = None) -> aiohttp.ClientResponse: """ This endpoint creates a new dataset. :param name: The name of the dataset. + :type name: str :param description: A description for the dataset. + :type description: str, optional :return: dataset info - :rtype: dict + :rtype: aiohttp.ClientResponse Raises: Exception: if error occurred while create dataset @@ -475,12 +482,14 @@ async def create_dataset(self, name: str, description: Optional[str] = None): await session.close() raise error - async def get_dataset_by_id(self, dataset_id: str): + async def get_dataset_by_id(self, dataset_id: str) -> dict: """ This endpoint gets the specific dataset. :param dataset_id: The ID of the dataset to return. + :type dataset_id: str :return: dataset info + :rtype: dict Raises: Exception: if error occurred while get dataset by id @@ -501,14 +510,14 @@ async def get_dataset_by_id(self, dataset_id: str): await session.close() raise - async def delete_dataset_by_id(self, dataset_id: str): + async def delete_dataset_by_id(self, dataset_id: str) -> aiohttp.ClientResponse: """ This endpoint deletes the specific dataset. :param dataset_id: The ID of the dataset to delete. :type dataset_id: str - :return: dataset info - :rtype: dict + :return: response + :rtype: aiohttp.ClientResponse Raises: Exception: if error occurred while delete dataset by id @@ -528,14 +537,16 @@ async def delete_dataset_by_id(self, dataset_id: str): await session.close() raise error - async def upload_dataset_image(self, dataset_id: str, file_path: str): + async def upload_dataset_image(self, dataset_id: str, file_path: str) -> aiohttp.ClientResponse: """ This endpoint returns pre-signed details to upload a dataset image to S3. :param dataset_id: The ID of the dataset to which the image will be uploaded. + :type dataset_id: str :param file_path: The path to the image file. + :type file_path: str :return: dataset info - :rtype: dict + :rtype: aiohttp.ClientResponse Raises: ValueError: if invalid file extension @@ -573,26 +584,27 @@ async def upload_dataset_image(self, dataset_id: str, file_path: str): session = await self.___get_client_session("post", empty=True) async with session.post(upload_url, data=fields) as response: response.raise_for_status() - response_text = await response.text() - self.___logger.debug( - f"Dataset with dataset_id={dataset_id} uploaded using {file_path}:" f" {response_text}" - ) + self.___logger.debug(f"Dataset with dataset_id={dataset_id} uploaded using {file_path}: {response}") await session.close() - return response_text + return response except Exception as error: self.___logger.error(f"Error occurred uploading dataset: {str(error)}") if not session.closed: await session.close() raise - async def upload_generated_image_to_dataset(self, dataset_id: str, generated_image_id: str): + async def upload_generated_image_to_dataset( + self, dataset_id: str, generated_image_id: str + ) -> aiohttp.ClientResponse: """ This endpoint will upload a previously generated image to the dataset. :param dataset_id: The ID of the dataset to upload the image to. + :type dataset_id: str :param generated_image_id: The ID of the image to upload to the dataset. + :type generated_image_id: str :return: dataset info - :rtype: dict + :rtype: aiohttp.ClientResponse Raises: Exception: if error occurred while upload generated image to dataset @@ -629,21 +641,30 @@ async def train_custom_model( resolution: int = 512, sd_version: Optional[str] = None, strength: str = "MEDIUM", - ): + ) -> aiohttp.ClientResponse: """ This endpoint will train a new custom model. :param name: The name of the model. + :type name: str :param description: The description of the model. + :type description: str, optional :param dataset_id: The ID of the dataset to train the model on. + :type dataset_id: str :param instance_prompt: The instance prompt to use during training. + :type instance_prompt: str :param model_type: The category the most accurately reflects the model. + :type model_type: str, optional :param nsfw: mark for NSFW model. Default is False. + :type nsfw: bool, optional :param resolution: The resolution for training. Must be 512 or 768. + :type resolution: int, optional :param sd_version: The base version of stable diffusion to use if not using a custom model. + :type sd_version: str, optional :param strength: When training using the PIXEL_ART model type, this influences the training strength. + :type strength: str, optional :return: dataset info - :rtype: dict + :rtype: aiohttp.ClientResponse Raises: Exception: if error occurred while train custom model @@ -675,12 +696,14 @@ async def train_custom_model( await session.close() raise error - async def get_custom_model_by_id(self, model_id: str): + async def get_custom_model_by_id(self, model_id: str) -> dict: """ This endpoint gets the specific custom model. :param model_id: The ID of the custom model to return. + :type model_id: str :return: custom model info + :rtype: dict Raises: Exception: if error occurred while get custom model by id @@ -691,22 +714,24 @@ async def get_custom_model_by_id(self, model_id: str): try: async with session.get(url) as response: response.raise_for_status() - response_text = await response.text() - self.___logger.debug(f"Custom modal has been trained: {response_text}") + response = await response.json() + self.___logger.debug(f"Custom modal has been trained: {response}") await session.close() - return response_text + return response except Exception as error: self.___logger.error(f"Error obtaining custom model: {str(error)}") if not session.closed: await session.close() raise - async def delete_custom_model_by_id(self, model_id: str): + async def delete_custom_model_by_id(self, model_id: str) -> aiohttp.ClientResponse: """ This endpoint will delete a specific custom model. :param model_id: The ID of the model to delete. - :type model_id: str + :type model_id: aiohttp.ClientResponse + :return: custom model info + :rtype: aiohttp.ClientResponse Raises: Exception: if error occurred while delete custom model by id @@ -728,7 +753,7 @@ async def delete_custom_model_by_id(self, model_id: str): async def wait_for_image_generation( self, generation_id: str, image_index: int = 0, poll_interval: int = 5, timeout: int = 120 - ): + ) -> dict: """ This method waits for the completion of image generation. diff --git a/src/leonardo_api/leonardo_sync.py b/src/leonardo_api/leonardo_sync.py index 466765f..c928962 100644 --- a/src/leonardo_api/leonardo_sync.py +++ b/src/leonardo_api/leonardo_sync.py @@ -5,7 +5,7 @@ Copyright (c) 2023. All rights reserved. Created: 29.08.2023 -Last Modified: 30.08.2023 +Last Modified: 24.11.2023 Description: This file contains synchronous implementation for Leonardo.ai API @@ -31,37 +31,64 @@ class Leonardo: logger (logging.Logger, optional): default logger. Default will be initialized if not provided. """ - def __init__(self, auth_token: str, logger: Optional[logging.Logger] = None): + def __init__(self, auth_token: str, logger: Optional[logging.Logger] = None) -> None: """ Constructs all the necessary attributes for the Leonardo object. :param auth_token: Auth Bearer token. Required. + :type auth_token: str :param logger: default logger. Default will be initialized if not provided. + :type logger: logging.Logger, optional """ - self.___session = requests.Session() - self.___session.headers.update({"Authorization": f"Bearer {auth_token}"}) + self.___auth_token = auth_token self.___logger = logger if logger else setup_logger("Leonardo", "leonardo_async.log") - self.___get_headers = {"content-type": "application/json"} - self.___post_headers = {"accept": "application/json", "content-type": "application/json"} self.___logger.debug("Leonardo init complete") - def get_user_info(self): + def ___get_client_session(self, request_type: str = "get", empty: bool = False) -> requests.Session: + """ + This method returns requests.Session() with headers. + + :param request_type: type of request: "get" or "post" + :type request_type: str + :param empty: is True if headers will be empty + :type empty: bool + :return: client session with headers + :rtype: requests.Session + """ + headers = {} + if not empty: + headers = {"Authorization": f"Bearer {self.___auth_token}"} + if request_type.lower() == "get" or request_type.lower() == "delete": + headers.update({"content-type": "application/json"}) + if request_type.lower() == "post": + headers.update({"accept": "application/json", "content-type": "application/json"}) + session = requests.Session() + session.headers.update(headers) + return session + + def get_user_info(self) -> dict: """ This endpoint will return your user information, including your user ID. + + :return: The user information. + :rtype: dict + + Raises: + Exception: If an error occurs while getting user info. """ url = "https://cloud.leonardo.ai/api/rest/v1/me" self.___logger.debug(f"Requesting user info: GET {url}") + session = self.___get_client_session("get") try: - headers_copy = dict(self.___session.headers) - headers_copy.update(self.___get_headers) - response = self.___session.get(url, headers=headers_copy) + response = session.get(url) response.raise_for_status() response = response.json() self.___logger.debug(f"User info: {response}") + session.close() return response except Exception as error: self.___logger.error(f"Error occurred while getting user info: {str(error)}") - raise + raise error def post_generations( self, @@ -84,30 +111,51 @@ def post_generations( prompt_magic: bool = True, control_net: bool = False, control_net_type: Optional[str] = None, - ): + ) -> dict: """ This endpoint will generate images. :param prompt: The prompt used to generate images. + :type prompt: str :param negative_prompt: The negative prompt used for the image generation. + :type negative_prompt: str, optional :param model_id: The model ID used for the image generation. + :type model_id: str, optional :param sd_version: The base version of stable diffusion to use if not using a custom model. + :type sd_version: str, optional :param num_images: The number of images to generate. Default is 4. + :type num_images: int, optional :param width: The width of the images. Default is 512px. + :type width: int, optional :param height: The height of the images. Default is 512px. + :type height: int, optional :param num_inference_steps: The number of inference steps for generation. Must be from 40 to 60. Default is 40. + :type num_inference_steps: int, optional :param guidance_scale: How strongly the generation should reflect the prompt. Number from 1 to 20. Default is 7. + :type guidance_scale: int, optional :param init_generation_image_id: The ID of an existing image to use in image2image. + :type init_generation_image_id: str, optional :param init_image_id: The ID of an Init Image to use in image2image. + :type init_image_id: str, optional :param init_strength: How strongly the generated images should reflect the original image in image2image. + :type init_strength: float, optional :param scheduler: The scheduler to generate images with. + :type scheduler: str, optional :param preset_style: The style to generate images with. + :type preset_style: str, optional :param tiling: Whether the generated images should tile on all axis. Default is False. + :type tiling: bool, optional :param public: Whether the generated images should show in the community feed. Default is False. + :type public: bool, optional :param prompt_magic: Enable to use Prompt Magic. Default is True. + :type prompt_magic: bool, optional :param control_net: Enable to use ControlNet. Requires an init image to be provided. Requires a model based on SD v1.5. Default is False. + :type control_net: bool, optional :param control_net_type: The type of ControlNet to use. + :type control_net_type: str, optional + :return: The generation response. + :rtype: dict """ # pylint: disable=too-many-locals url = "https://cloud.leonardo.ai/api/rest/v1/generations" @@ -133,86 +181,109 @@ def post_generations( "controlNetType": control_net_type, } self.___logger.debug(f"Requesting post generations: POST {url} with payload: {payload}") + session = self.___get_client_session("post") try: - headers_copy = dict(self.___session.headers) - headers_copy.update(self.___post_headers) - response = self.___session.post(url, json=payload, headers=headers_copy) + response = session.post(url, json=payload) response.raise_for_status() response = response.json() self.___logger.debug(f"Post generations: {response}") return response except Exception as error: self.___logger.error(f"Error occurred while post generations: {str(error)}") - raise + raise error - def get_single_generation(self, generation_id: str): + def get_single_generation(self, generation_id: str) -> dict: """ This endpoint will provide information about a specific generation. :param generation_id: The ID of the generation to return. + :type generation_id: str + :return: The generation information. + :rtype: dict + + Raises: + Exception: If an error occurs while getting generation info. """ url = f"https://cloud.leonardo.ai/api/rest/v1/generations/{generation_id}" self.___logger.debug(f"Requested single generations: GET {url} with generation_id={generation_id}") + session = self.___get_client_session("get") try: - headers_copy = dict(self.___session.headers) - headers_copy.update(self.___get_headers) - response = self.___session.get(url, headers=headers_copy) + response = session.get(url) response.raise_for_status() response = response.json() self.___logger.debug(f"Single generations: {response}") return response except Exception as error: self.___logger.error(f"Error occurred while get single generations: {str(error)}") - raise + raise error - def delete_single_generation(self, generation_id: str): + def delete_single_generation(self, generation_id: str) -> requests.Response: """ This endpoint deletes a specific generation. :param generation_id: The ID of the generation to delete. + :type generation_id: str + :return: The response from the delete request. + :rtype: requests.Response + + Raises: + Exception: If an error occurs while deleting generation. """ url = f"https://cloud.leonardo.ai/api/rest/v1/generations/{generation_id}" self.___logger.debug(f"Delete generations with generation_id={generation_id}: DELETE {url}") + session = self.___get_client_session("delete") try: - headers_copy = dict(self.___session.headers) - headers_copy.update(self.___get_headers) - response = self.___session.delete(url, headers=headers_copy) + response = session.delete(url) response.raise_for_status() - response = response.json() self.___logger.debug(f"Generations {generation_id} has been deleted: {response}") return response except Exception as error: self.___logger.error(f"Error occurred while delete generation: {str(error)}") - raise + raise error - def get_generations_by_user(self, user_id: str, offset: int = 0, limit: int = 10): + def get_generations_by_user(self, user_id: str, offset: int = 0, limit: int = 10) -> dict: """ This endpoint returns all generations by a specific user. :param user_id: The ID of the user. + :type user_id: str :param offset: The offset for pagination. + :type offset: int :param limit: The limit for pagination. + :type limit: int + :return: The generations for the user. + :rtype: dict + + Raises: + Exception: If an error occurs while obtaining user's generations. """ url = f"https://cloud.leonardo.ai/api/rest/v1/generations/user/{user_id}" params = {"offset": offset, "limit": limit} self.___logger.debug(f"Requested generations for {user_id} with params {params}: GET {url}") + session = self.___get_client_session("get") try: - headers_copy = dict(self.___session.headers) - headers_copy.update(self.___get_headers) - response = self.___session.get(url, params=params, headers=headers_copy) + response = session.get(url, params=params) response.raise_for_status() response = response.json() self.___logger.debug(f"Generations for user {user_id} are: {response}") return response except Exception as error: self.___logger.error(f"Error occurred while obtaining user's generations: {str(error)}") - raise + raise error - def upload_init_image(self, file_path: str): + def upload_init_image(self, file_path: str) -> str: """ This endpoint returns pre-signed details to upload an init image to S3. :param file_path: The path to the image file. + :type: str + :return: The generation ID of the uploaded image. + :rtype: str + :raises ValueError: If an invalid file extension is provided. + + Raises: + ValueError: If an invalid file extension is provided. + Exception: If an error occurs while uploading the image. """ valid_extensions = ["png", "jpg", "jpeg", "webp"] extension = os.path.splitext(file_path)[1].strip(".") @@ -222,183 +293,218 @@ def upload_init_image(self, file_path: str): url = "https://cloud.leonardo.ai/api/rest/v1/init-image" payload = {"extension": extension} self.___logger.debug(f"Init image {file_path} upload requested with payload = {payload}: POST {url}") + session = self.___get_client_session("post") try: - headers_copy = dict(self.___session.headers) - headers_copy.update(self.___post_headers) - response = self.___session.post(url, json=payload, headers=headers_copy) + response = session.post(url, json=payload) response.raise_for_status() data = response.json() self.___logger.debug(f"Init image {file_path} initiated: {data}") - upload_url = data["uploadInitImage"]["url"] fields = json.loads(data["uploadInitImage"]["fields"]) + generation_id = data["uploadInitImage"]["id"] + session.close() + self.___logger.debug(f"Init image {file_path} uploading as binary: POST {upload_url}") + session = self.___get_client_session("post", empty=True) with open(file_path, "rb") as file: file_data = file.read() - - fields.update({"file": file_data}) - - self.___logger.debug(f"Init image {file_path} uploading as binary: POST {upload_url}") - headers_copy = dict(self.___session.headers) - headers_copy.update(self.___post_headers) - response = self.___session.post(upload_url, data=fields, headers=headers_copy) - response.raise_for_status() - response_text = response.text - self.___logger.debug(f"Init image {file_path} has been uploaded: {response_text}") - return response_text + fields.update({"file": file_data}) + response = session.post(upload_url, data=fields) + response.raise_for_status() + self.___logger.debug(f"Init image {file_path} has been uploaded with generation_id={generation_id}") + return generation_id except Exception as error: self.___logger.error(f"Error occurred while upload init image: {str(error)}") - raise + raise error - def get_single_init_image(self, image_id: str): + def get_single_init_image(self, image_id: str) -> dict: """ This endpoint will return a single init image. :param image_id: The ID of the init image to return. + :type image_id: str + :return: The init image. + :rtype: dict """ url = f"https://cloud.leonardo.ai/api/rest/v1/init-image/{image_id}" self.___logger.debug(f"Requested single image with image_id={image_id}: GET {url}") + session = self.___get_client_session("get") try: - headers_copy = dict(self.___session.headers) - headers_copy.update(self.___get_headers) - response = self.___session.get(url, headers=headers_copy) + response = session.get(url) response.raise_for_status() response = response.json() self.___logger.debug(f"Single image provided: {response}") return response except Exception as error: self.___logger.error(f"Error occurred while obtain single init image: {str(error)}") - raise + raise error - def delete_init_image(self, image_id: str): + def delete_init_image(self, image_id: str) -> requests.Response: """ This endpoint deletes an init image. :param image_id: The ID of the init image to delete. + :type image_id: str + :return: The response from the delete request. + :rtype: requests.Response + + Raises: + Exception: If an error occurs while deleting init image. """ url = f"https://cloud.leonardo.ai/api/rest/v1/init-image/{image_id}" self.___logger.debug(f"Requested to delete single image with image_id={image_id}: DELETE {url}") + session = self.___get_client_session("delete") try: - headers_copy = dict(self.___session.headers) - headers_copy.update(self.___get_headers) - response = self.___session.delete(url, headers=headers_copy) + response = session.delete(url) response.raise_for_status() - response = response.json() self.___logger.debug(f"Single image deleted: {response}") + session.close() return response except Exception as error: self.___logger.error(f"Error occurred while deleting init image: {str(error)}") - raise + raise error - def create_upscale(self, image_id: str): + def create_upscale(self, image_id: str) -> requests.Response: """ This endpoint will create an upscale for the provided image ID. :param image_id: The ID of the image to upscale. + :type image_id: str + :return: The response from the create request. + :rtype: requests.Response + + Raises: + Exception: If an error occurs while creating upscale. """ url = "https://cloud.leonardo.ai/api/rest/v1/variations/upscale" payload = {"id": image_id} self.___logger.debug(f"Requested to upscale image with payload {payload}: POST {url}") + session = self.___get_client_session("post") try: - headers_copy = dict(self.___session.headers) - headers_copy.update(self.___post_headers) - response = self.___session.post(url, json=payload, headers=headers_copy) + response = session.post(url, json=payload) response.raise_for_status() - response = response.json() self.___logger.debug(f"Upscale created: {response}") + session.close() return response except Exception as error: self.___logger.error(f"Error occurred while up-scaling image: {str(error)}") - raise + raise error - def get_variation_by_id(self, generation_id: str): + def get_variation_by_id(self, generation_id: str) -> dict: """ This endpoint will get the variation by ID. :param generation_id: The ID of the variation to get. + :type generation_id: str + :return: The variation. + :rtype: dict + + Raises: + Exception: If an error occurs while getting variation. """ url = f"https://cloud.leonardo.ai/api/rest/v1/variations/{generation_id}" self.___logger.debug(f"Requested to obtain variation by id {generation_id}: GET {url}") + session = self.___get_client_session("get") try: - headers_copy = dict(self.___session.headers) - headers_copy.update(self.___get_headers) - response = self.___session.get(url, headers=headers_copy) + response = session.get(url) response.raise_for_status() response = response.json() self.___logger.debug(f"Get variation by ID: {response}") return response except Exception as error: self.___logger.error(f"Error occurred while get variation by id: {str(error)}") - raise + raise error - def create_dataset(self, name: str, description: Optional[str] = None): + def create_dataset(self, name: str, description: Optional[str] = None) -> requests.Response: """ This endpoint creates a new dataset. :param name: The name of the dataset. + :type name: str :param description: A description for the dataset. + :type description: str, optional + :return: The response from the create request. + :rtype: requests.Response + + Raises: + Exception: If an error occurs while creating dataset. """ url = "https://cloud.leonardo.ai/api/rest/v1/datasets" payload = {"name": name, "description": description} self.___logger.debug(f"Requested to create dataset with payload {payload}: POST {url}") + session = self.___get_client_session("post") try: - headers_copy = dict(self.___session.headers) - headers_copy.update(self.___post_headers) - response = self.___session.post(url, json=payload, headers=headers_copy) + response = session.post(url, json=payload) response.raise_for_status() - response = response.json() self.___logger.debug(f"Dataset has been created: {response}") + session.close() return response except Exception as error: self.___logger.error(f"Error occurred while create dataset: {str(error)}") - raise + raise error - def get_dataset_by_id(self, dataset_id: str): + def get_dataset_by_id(self, dataset_id: str) -> dict: """ This endpoint gets the specific dataset. :param dataset_id: The ID of the dataset to return. + :type dataset_id: str + :return: The dataset. + :rtype: dict + + Raises: + Exception: If an error occurs while getting dataset. """ url = f"https://cloud.leonardo.ai/api/rest/v1/datasets/{dataset_id}" self.___logger.debug(f"Requested to obtain dataset dataset_id={dataset_id}: GET {url}") + session = self.___get_client_session("get") try: - headers_copy = dict(self.___session.headers) - headers_copy.update(self.___get_headers) - response = self.___session.get(url, headers=headers_copy) + response = session.get(url) response.raise_for_status() response = response.json() self.___logger.debug(f"Dataset with dataset_id={dataset_id} provided: {response}") return response except Exception as error: self.___logger.error(f"Error occurred while get dataset: {str(error)}") - raise + raise error - def delete_dataset_by_id(self, dataset_id: str): + def delete_dataset_by_id(self, dataset_id: str) -> requests.Response: """ This endpoint deletes the specific dataset. :param dataset_id: The ID of the dataset to delete. + :type dataset_id: str + :return: The response from the delete request. + :rtype: requests.Response + + Raises: + Exception: If an error occurs while deleting dataset. """ url = f"https://cloud.leonardo.ai/api/rest/v1/datasets/{dataset_id}" self.___logger.debug(f"Requested to delete dataset dataset_id={dataset_id}: DELETE {url}") + session = self.___get_client_session("delete") try: - headers_copy = dict(self.___session.headers) - headers_copy.update(self.___get_headers) - response = self.___session.delete(url, headers=headers_copy) + response = session.delete(url) response.raise_for_status() - response = response.json() self.___logger.debug(f"Dataset with dataset_id={dataset_id} has been deleted: {response}") return response except Exception as error: self.___logger.error(f"Error occurred while delete dataset: {str(error)}") - raise + raise error - def upload_dataset_image(self, dataset_id: str, file_path: str): + def upload_dataset_image(self, dataset_id: str, file_path: str) -> requests.Response: """ This endpoint returns pre-signed details to upload a dataset image to S3. :param dataset_id: The ID of the dataset to which the image will be uploaded. + :type dataset_id: str :param file_path: The path to the image file. + :type file_path: str + :return: The response from the upload request. + :rtype: requests.Response + + Raises: + ValueError: If an invalid file extension is provided. """ # pylint: disable=too-many-locals valid_extensions = ["png", "jpg", "jpeg", "webp"] @@ -410,63 +516,65 @@ def upload_dataset_image(self, dataset_id: str, file_path: str): payload = {"extension": extension} self.___logger.debug(f"Requested to upload dataset_id={dataset_id} from {file_path}: POST {url}") + session = self.___get_client_session("post") try: - headers_copy = dict(self.___session.headers) - headers_copy.update(self.___post_headers) - response = self.___session.post(url, json=payload, headers=headers_copy) + response = session.post(url, json=payload) response.raise_for_status() data = response.json() self.___logger.debug( f"Dataset with dataset_id={dataset_id} started to upload from {file_path}:" f" {response}" ) - upload_url = data["uploadDatasetImage"]["url"] fields = json.loads(data["uploadDatasetImage"]["fields"]) + dataset_id = data["uploadDatasetImage"]["datasetId"] + self.___logger.debug(f"Uploading dataset_id={dataset_id} from {file_path}: POST {url}") + session = self.___get_client_session("post", empty=True) with open(file_path, "rb") as file: file_data = file.read() - - fields.update({"file": file_data}) - - self.___logger.debug(f"Uploading dataset_id={dataset_id} from {file_path}: POST {url}") - headers_copy = dict(self.___session.headers) - headers_copy.update(self.___post_headers) - response = self.___session.post(upload_url, data=fields, headers=headers_copy) - response.raise_for_status() - response_text = response.text - self.___logger.debug( - f"Dataset with dataset_id={dataset_id} uploaded using {file_path}: " f"{response_text}" - ) - return response_text + fields.update({"file": file_data}) + response = session.post(upload_url, data=fields) + response.raise_for_status() + self.___logger.debug( + f"Dataset with dataset_id={dataset_id} uploaded using {file_path}" + ) + session.close() + return response except Exception as error: self.___logger.error(f"Error occurred uploading dataset: {str(error)}") - raise + raise error - def upload_generated_image_to_dataset(self, dataset_id: str, generated_image_id: str): + def upload_generated_image_to_dataset(self, dataset_id: str, generated_image_id: str) -> requests.Response: """ This endpoint will upload a previously generated image to the dataset. :param dataset_id: The ID of the dataset to upload the image to. + :type dataset_id: str :param generated_image_id: The ID of the image to upload to the dataset. + :type generated_image_id: str + :return: The response from the upload request. + :rtype: requests.Response + + Raises: + Exception: If an error occurs while uploading image to dataset. """ url = f"https://cloud.leonardo.ai/api/rest/v1/datasets/{dataset_id}/upload/gen" payload = {"generatedImageId": generated_image_id} self.___logger.debug( f"Requested to upload generated_image_id={generated_image_id} " f"to dataset_id={dataset_id}: POST {url}" ) + session = self.___get_client_session("post") try: - headers_copy = dict(self.___session.headers) - headers_copy.update(self.___post_headers) - response = self.___session.post(url, json=payload, headers=headers_copy) + response = session.post(url, json=payload) response.raise_for_status() - response = response.json() self.___logger.debug( f"Image with image_id={generated_image_id} has been uploaded to " f"dataset_id={dataset_id}: {response}" ) + session.close() return response except Exception as error: self.___logger.error(f"Error occurred while upload generated image to dataset: {str(error)}") - raise + raise error def train_custom_model( self, @@ -479,19 +587,30 @@ def train_custom_model( resolution: int = 512, sd_version: Optional[str] = None, strength: str = "MEDIUM", - ): + ) -> requests.Response: """ This endpoint will train a new custom model. :param name: The name of the model. + :type name: str :param description: The description of the model. + :type description: str, optional :param dataset_id: The ID of the dataset to train the model on. + :type dataset_id: str :param instance_prompt: The instance prompt to use during training. + :type instance_prompt: str :param model_type: The category the most accurately reflects the model. + :type model_type: str :param nsfw: mark for NSFW model. Default is False. + :type nsfw: bool, optional :param resolution: The resolution for training. Must be 512 or 768. + :type resolution: int, optional :param sd_version: The base version of stable diffusion to use if not using a custom model. + :type sd_version: str, optional :param strength: When training using the PIXEL_ART model type, this influences the training strength. + :type strength: str, optional + :return: The response from the create request. + :rtype: requests.Response """ # pylint: disable=too-many-locals url = "https://cloud.leonardo.ai/api/rest/v1/models" @@ -507,71 +626,90 @@ def train_custom_model( "strength": strength, } self.___logger.debug(f"Requested to train custom model with payload {payload}: POST {url}") + session = self.___get_client_session("post") try: - headers_copy = dict(self.___session.headers) - headers_copy.update(self.___post_headers) - response = self.___session.post(url, json=payload, headers=headers_copy) + response = session.post(url, json=payload) response.raise_for_status() - response_text = response.text - self.___logger.debug(f"Custom modal has been trained: {response_text}") - return response_text + self.___logger.debug(f"Custom modal has been trained: {response}") + session.close() + return response except Exception as error: self.___logger.error(f"Error training custom model: {str(error)}") - raise + raise error - def get_custom_model_by_id(self, model_id: str): + def get_custom_model_by_id(self, model_id: str) -> dict: """ This endpoint gets the specific custom model. :param model_id: The ID of the custom model to return. + :type model_id: str + :return: The custom model. + :rtype: dict + + Raises: + Exception: If an error occurs while getting custom model. """ url = f"https://cloud.leonardo.ai/api/rest/v1/models/{model_id}" self.___logger.debug(f"Requested to obtain custom model by model_id={model_id}: GET {url}") + session = self.___get_client_session("get") try: - headers_copy = dict(self.___session.headers) - headers_copy.update(self.___get_headers) - response = self.___session.get(url, headers=headers_copy) + response = session.get(url) response.raise_for_status() - response_text = response.text - self.___logger.debug(f"Custom modal has been trained: {response_text}") - return response_text + response = response.json() + self.___logger.debug(f"Custom modal has been trained: {response}") + session.close() + return response except Exception as error: self.___logger.error(f"Error obtaining custom model: {str(error)}") - raise + raise error - def delete_custom_model_by_id(self, model_id: str): + def delete_custom_model_by_id(self, model_id: str) -> requests.Response: """ This endpoint will delete a specific custom model. :param model_id: The ID of the model to delete. + :type model_id: str + :return: The response from the delete request. + :rtype: requests.Response + + Raises: + Exception: If an error occurs while deleting custom model. """ url = f"https://cloud.leonardo.ai/api/rest/v1/models/{model_id}" self.___logger.debug(f"Requested to delete custom model by model_id={model_id}: GET {url}") + session = self.___get_client_session("delete") try: - headers_copy = dict(self.___session.headers) - headers_copy.update(self.___get_headers) - response = self.___session.delete(url, headers=headers_copy) + response = session.delete(url) response.raise_for_status() - response_text = response.text - self.___logger.debug(f"Custom modal has been deleted: {response_text}") - return response_text + self.___logger.debug(f"Custom modal has been deleted: {response}") + return response except Exception as error: self.___logger.error(f"Error delete custom model: {str(error)}") - raise + raise error - def wait_for_image_generation(self, generation_id, image_index=0, poll_interval=5, timeout=120): + def wait_for_image_generation( + self, generation_id: str, image_index: int = 0, poll_interval: int = 5, timeout: int = 120 + ) -> dict: """ This method waits for the completion of image generation. :param generation_id: The ID of the generation to check. + :type generation_id: str :param image_index: (Optional) The index of the specific image to wait for. If None, waits for all images to complete. + :type image_index: int, optional :param poll_interval: (Optional) The time interval in seconds between each check. Default is 5 seconds. + :type poll_interval: int, optional :param timeout: (Optional) Waiting timeout. Default is 120 seconds. - + :type timeout: int, optional + :raises TimeoutError: If the image(s) have not been generated within the timeout. :raises IndexError: If an invalid image_index is provided. - :return: The completed image(s) once generation is complete. + :rtype: dict + + Raises: + TimeoutError: If the image(s) have not been generated within the timeout. + IndexError: If an invalid image_index is provided. """ timeout_counter = 0 while True: