-
Notifications
You must be signed in to change notification settings - Fork 6
/
nms_demo.py
56 lines (49 loc) · 2.3 KB
/
nms_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#! /usr/bin/env python
# coding=utf-8
#================================================================
# Copyright (C) 2018 * Ltd. All rights reserved.
#
# Editor : VIM
# File name : nms_demo.py
# Author : YunYang1994
# Created date: 2018-11-27 13:02:17
# Description :
#
#================================================================
import time
import numpy as np
import tensorflow as tf
from PIL import Image
from core import utils
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
IMAGE_H, IMAGE_W = 416, 416
EPOCHS = 5
# SIZE = [608, 608]
classes = utils.read_coco_names('./data/coco.names')
num_classes = len(classes)
image_path = "./data/demo_data/road.jpeg"
img = Image.open(image_path)
img_resized = np.array(img.resize(size=(IMAGE_H, IMAGE_W)), dtype=np.float32)
img_resized = img_resized / 255.
cpu_nms_graph, gpu_nms_graph = tf.Graph(), tf.Graph()
# nms on GPU
input_tensor, output_tensors = utils.read_pb_return_tensors(gpu_nms_graph, "./checkpoint/yolov3_gpu_nms.pb",
["Placeholder:0", "concat_10:0", "concat_11:0", "concat_12:0"])
with tf.Session(graph=gpu_nms_graph) as sess:
for i in range(EPOCHS):
start = time.time()
boxes, scores, labels = sess.run(output_tensors, feed_dict={input_tensor: np.expand_dims(img_resized, axis=0)})
print("=> nms on gpu the number of boxes= %d time=%.2f ms" %(len(boxes), 1000*(time.time()-start)))
print(boxes.shape,scores.shape,labels.shape)
image = utils.draw_boxes(img, boxes, scores, labels, classes, [IMAGE_H, IMAGE_W], show=True)
# nms on CPU
# input_tensor, output_tensors = utils.read_pb_return_tensors(cpu_nms_graph, "./checkpoint/yolov3_cpu_nms.pb",
# ["Placeholder:0", "concat_9:0", "mul_6:0"])
# with tf.Session(graph=cpu_nms_graph) as sess:
# for i in range(EPOCHS):
# start = time.time()
# boxes, scores = sess.run(output_tensors, feed_dict={input_tensor: np.expand_dims(img_resized, axis=0)})
# boxes, scores, labels = utils.cpu_nms(boxes, scores, num_classes, score_thresh=0.5, iou_thresh=0.5)
# print("=> nms on cpu the number of boxes= %d time=%.2f ms" %(len(boxes), 1000*(time.time()-start)))
# image = utils.draw_boxes(img, boxes, scores, labels, classes, [IMAGE_H, IMAGE_W], show=True)