forked from MaurizioFD/RecSys2019_DeepLearning_Evaluation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_RecSys_18_SpectralCF.py
359 lines (259 loc) · 15.7 KB
/
run_RecSys_18_SpectralCF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on 22/11/17
@author: Maurizio Ferrari Dacrema
@author: Simone Boglio
"""
from Recommender_import_list import *
from Conferences.RecSys.SpectralCF_our_interface.SpectralCF_RecommenderWrapper import SpectralCF_RecommenderWrapper
from ParameterTuning.run_parameter_search import runParameterSearch_Collaborative
from Utils.print_results_latex_table import print_time_statistics_latex_table, print_results_latex_table, print_parameters_latex_table
from Utils.assertions_on_data_for_experiments import assert_implicit_data, assert_disjoint_matrices
from Utils.plot_popularity import plot_popularity_bias, save_popularity_statistics
from functools import partial
import numpy as np
import os, traceback, multiprocessing
from Conferences.RecSys.SpectralCF_our_interface.Movielens1M.Movielens1MReader import Movielens1MReader
from Conferences.RecSys.SpectralCF_our_interface.MovielensHetrec2011.MovielensHetrec2011Reader import MovielensHetrec2011Reader
from Conferences.RecSys.SpectralCF_our_interface.AmazonInstantVideo.AmazonInstantVideoReader import AmazonInstantVideoReader
######################################################################
from skopt.space import Real, Integer, Categorical
import traceback
from Utils.PoolWithSubprocess import PoolWithSubprocess
from ParameterTuning.SearchBayesianSkopt import SearchBayesianSkopt
from ParameterTuning.SearchSingleCase import SearchSingleCase
from ParameterTuning.SearchAbstractClass import SearchInputRecommenderParameters
def runParameterSearch_SpectralCF(recommender_class, URM_train, earlystopping_parameters, output_file_name_root, n_cases = 35,
evaluator_validation= None, evaluator_test=None, metric_to_optimize = "RECALL",
output_folder_path ="result_experiments/"):
# If directory does not exist, create
if not os.path.exists(output_folder_path):
os.makedirs(output_folder_path)
parameterSearch = SearchBayesianSkopt(recommender_class, evaluator_validation=evaluator_validation, evaluator_test=evaluator_test)
##########################################################################################################
if recommender_class is SpectralCF_RecommenderWrapper:
hyperparameters_range_dictionary = {}
hyperparameters_range_dictionary["batch_size"] = Categorical([1024])
hyperparameters_range_dictionary["embedding_size"] = Categorical([4, 8, 16, 32])
hyperparameters_range_dictionary["decay"] = Real(low = 1e-5, high = 1e-1, prior = 'log-uniform')
hyperparameters_range_dictionary["learning_rate"] = Real(low = 1e-5, high = 1e-2, prior = 'log-uniform')
hyperparameters_range_dictionary["k"] = Integer(low = 1, high = 6)
recommender_parameters = SearchInputRecommenderParameters(
CONSTRUCTOR_POSITIONAL_ARGS = [URM_train],
CONSTRUCTOR_KEYWORD_ARGS = {},
FIT_POSITIONAL_ARGS = [],
FIT_KEYWORD_ARGS = earlystopping_parameters
)
#########################################################################################################
parameterSearch.search(recommender_parameters,
parameter_search_space = hyperparameters_range_dictionary,
n_cases = n_cases,
output_folder_path = output_folder_path,
output_file_name_root = output_file_name_root,
metric_to_optimize = metric_to_optimize)
def read_data_split_and_search_SpectralCF(dataset_name, cold_start=False,
cold_items=None, isKNN_multiprocess=True, isKNN_tune=True,
isSpectralCF_train_default=True, isSpectralCF_tune=True, print_results=True):
if dataset_name == "movielens1m_original":
assert(cold_start is not True)
dataset = Movielens1MReader(type="original")
elif dataset_name == "movielens1m_ours":
dataset = Movielens1MReader(type="ours", cold_start=cold_start, cold_items=cold_items)
elif dataset_name == "hetrec":
assert (cold_start is not True)
dataset = MovielensHetrec2011Reader()
elif dataset_name == "amazon_instant_video":
assert (cold_start is not True)
dataset = AmazonInstantVideoReader()
if not cold_start:
output_folder_path = "result_experiments/{}/{}_{}/".format(CONFERENCE_NAME, ALGORITHM_NAME, dataset_name)
else:
output_folder_path = "result_experiments/{}/{}_cold_{}_{}/".format(CONFERENCE_NAME, ALGORITHM_NAME, cold_items, dataset_name)
URM_train = dataset.URM_train.copy()
URM_validation = dataset.URM_validation.copy()
URM_test = dataset.URM_test.copy()
# Ensure IMPLICIT data and DISJOINT sets
assert_implicit_data([URM_train, URM_validation, URM_test])
assert_disjoint_matrices([URM_train, URM_validation, URM_test])
# If directory does not exist, create
if not os.path.exists(output_folder_path):
os.makedirs(output_folder_path)
algorithm_dataset_string = "{}_{}_".format(ALGORITHM_NAME, dataset_name)
plot_popularity_bias([URM_train + URM_validation, URM_test],
["URM train", "URM test"],
output_folder_path + algorithm_dataset_string + "popularity_plot")
save_popularity_statistics([URM_train + URM_validation, URM_test],
["URM train", "URM test"],
output_folder_path + algorithm_dataset_string + "popularity_statistics")
metric_to_optimize = "RECALL"
from Base.Evaluation.Evaluator import EvaluatorHoldout
if not cold_start:
cutoff_list_validation = [50]
cutoff_list_test = [20, 30, 40, 50, 60, 70, 80, 90, 100]
else:
cutoff_list_validation = [20]
cutoff_list_test = [20]
evaluator_validation = EvaluatorHoldout(URM_validation, cutoff_list=cutoff_list_validation)
evaluator_test = EvaluatorHoldout(URM_test, cutoff_list=cutoff_list_test)
################################################################################################
###### KNN CF
if isKNN_tune:
collaborative_algorithm_list = [
Random,
TopPop,
UserKNNCFRecommender,
ItemKNNCFRecommender,
P3alphaRecommender,
RP3betaRecommender,
]
runParameterSearch_Collaborative_partial = partial(runParameterSearch_Collaborative,
URM_train = URM_train,
metric_to_optimize = metric_to_optimize,
evaluator_validation_earlystopping = evaluator_validation,
evaluator_validation = evaluator_validation,
evaluator_test = evaluator_test,
output_folder_path = output_folder_path,
parallelizeKNN = False,
allow_weighting = True,
n_cases = 35)
if isKNN_multiprocess:
pool = multiprocessing.Pool(processes=int(multiprocessing.cpu_count()), maxtasksperchild=1)
resultList = pool.map(runParameterSearch_Collaborative_partial, collaborative_algorithm_list)
pool.close()
pool.join()
else:
for recommender_class in collaborative_algorithm_list:
try:
runParameterSearch_Collaborative_partial(recommender_class)
except Exception as e:
print("On recommender {} Exception {}".format(recommender_class, str(e)))
traceback.print_exc()
################################################################################################
###### SpectralCF
if isSpectralCF_train_default:
try:
spectralCF_article_parameters = {
"epochs": 1000,
"batch_size": 1024,
"embedding_size": 16,
"decay": 0.001,
"k": 3,
"learning_rate": 1e-3,
}
spectralCF_earlystopping_parameters = {
"validation_every_n": 5,
"stop_on_validation": True,
"lower_validations_allowed": 20,
"evaluator_object": evaluator_validation,
"validation_metric": metric_to_optimize,
"epochs_min": 400,
}
parameterSearch = SearchSingleCase(SpectralCF_RecommenderWrapper,
evaluator_validation=evaluator_validation,
evaluator_test=evaluator_test)
recommender_parameters = SearchInputRecommenderParameters(
CONSTRUCTOR_POSITIONAL_ARGS = [URM_train],
FIT_KEYWORD_ARGS = spectralCF_earlystopping_parameters)
parameterSearch.search(recommender_parameters,
fit_parameters_values = spectralCF_article_parameters,
output_folder_path = output_folder_path,
output_file_name_root = SpectralCF_RecommenderWrapper.RECOMMENDER_NAME + "_article_default")
except Exception as e:
print("On recommender {} Exception {}".format(SpectralCF_RecommenderWrapper, str(e)))
traceback.print_exc()
elif isSpectralCF_tune:
try:
spectralCF_earlystopping_parameters = {
"validation_every_n": 5,
"stop_on_validation": True,
"lower_validations_allowed": 20,
"evaluator_object": evaluator_validation,
"validation_metric": metric_to_optimize,
"epochs_min": 400,
"epochs": 2000
}
runParameterSearch_SpectralCF(SpectralCF_RecommenderWrapper,
URM_train = URM_train,
earlystopping_parameters = spectralCF_earlystopping_parameters,
metric_to_optimize = metric_to_optimize,
evaluator_validation = evaluator_validation,
evaluator_test = evaluator_test,
output_folder_path = output_folder_path,
n_cases = 35,
output_file_name_root = SpectralCF_RecommenderWrapper.RECOMMENDER_NAME)
except Exception as e:
print("On recommender {} Exception {}".format(SpectralCF_RecommenderWrapper, str(e)))
traceback.print_exc()
################################################################################################
###### print results
if print_results:
n_validation_users = np.sum(np.ediff1d(URM_validation.indptr)>=1)
n_test_users = np.sum(np.ediff1d(URM_test.indptr)>=1)
if not cold_start:
results_file_root_name = ALGORITHM_NAME
else:
results_file_root_name = "{}_cold_{}".format(ALGORITHM_NAME, cold_items)
print_time_statistics_latex_table(result_folder_path = output_folder_path,
dataset_name = dataset_name,
results_file_prefix_name = results_file_root_name,
other_algorithm_list = [SpectralCF_RecommenderWrapper],
n_validation_users = n_validation_users,
n_test_users = n_test_users,
n_decimals = 2)
if cold_start:
cutoffs_to_report_list = [20]
else:
cutoffs_to_report_list = [20, 40, 60, 80, 100]
print_results_latex_table(result_folder_path = output_folder_path,
results_file_prefix_name = results_file_root_name,
dataset_name = dataset_name,
metrics_to_report_list = ["RECALL", "MAP"],
cutoffs_to_report_list = cutoffs_to_report_list,
other_algorithm_list = [SpectralCF_RecommenderWrapper])
if __name__ == '__main__':
ALGORITHM_NAME = "SpectralCF"
CONFERENCE_NAME = "RecSys"
# isKNN_multiprocess = True: knn parameter search in parallel among multiple process (fast), False: search in sequential way (slow, but no worry for deadlock)
isKNN_multiprocess = False
# isKNN_tune = True: knn parameter search, False: avoid this step
isKNN_tune = True
# isSpectralCF_train = True: train the SpectralCF model, False: avoid this step
isSpectralCF_train_default = False
# isSpectralCF_tune = True: parameter search for SpectralCF, False: avoid this step
isSpectralCF_tune = True
# print_results = True: print the results read from the output folder, False: avoid this step
print_results = True
cold_start = False
dataset_list = ["movielens1m_ours", "movielens1m_original", "hetrec", "amazon_instant_video"]
dataset_cold_start_list = ["movielens1m_ours"]
cold_start_items_list = [1, 2, 3, 4, 5]
if cold_start:
for dataset_name in dataset_cold_start_list:
for cold_start_items in cold_start_items_list:
read_data_split_and_search_SpectralCF(dataset_name, cold_start=cold_start, cold_items=cold_start_items,
isKNN_multiprocess=isKNN_multiprocess,
isKNN_tune=isKNN_tune,
isSpectralCF_train_default=isSpectralCF_train_default,
print_results=print_results
)
else:
for dataset_name in dataset_list:
read_data_split_and_search_SpectralCF(dataset_name, cold_start=cold_start,
isKNN_multiprocess=isKNN_multiprocess,
isKNN_tune=isKNN_tune,
isSpectralCF_train_default=isSpectralCF_train_default,
print_results=print_results
)
# mantain compatibility with latex parameteres function
if cold_start and print_results:
for n_cold_item in cold_start_items_list:
print_parameters_latex_table(result_folder_path = "result_experiments/{}/".format(CONFERENCE_NAME),
results_file_prefix_name = "{}_cold_{}".format(ALGORITHM_NAME, n_cold_item),
experiment_subfolder_list = dataset_cold_start_list,
other_algorithm_list = [SpectralCF_RecommenderWrapper])
elif not cold_start and print_results:
print_parameters_latex_table(result_folder_path = "result_experiments/{}/".format(CONFERENCE_NAME),
results_file_prefix_name = ALGORITHM_NAME,
experiment_subfolder_list = dataset_list,
other_algorithm_list = [SpectralCF_RecommenderWrapper])