forked from dog-qiuqiu/Yolo-Fastest
-
Notifications
You must be signed in to change notification settings - Fork 0
/
darknet_images.py
235 lines (202 loc) · 9.25 KB
/
darknet_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import argparse
import os
import glob
import random
import darknet
import time
import cv2
import numpy as np
import darknet
def parser():
parser = argparse.ArgumentParser(description="YOLO Object Detection")
parser.add_argument("--input", type=str, default="",
help="image source. It can be a single image, a"
"txt with paths to them, or a folder. Image valid"
" formats are jpg, jpeg or png."
"If no input is given, ")
parser.add_argument("--batch_size", default=1, type=int,
help="number of images to be processed at the same time")
parser.add_argument("--weights", default="yolov4.weights",
help="yolo weights path")
parser.add_argument("--dont_show", action='store_true',
help="windown inference display. For headless systems")
parser.add_argument("--ext_output", action='store_true',
help="display bbox coordinates of detected objects")
parser.add_argument("--save_labels", action='store_true',
help="save detections bbox for each image in yolo format")
parser.add_argument("--config_file", default="./cfg/yolov4.cfg",
help="path to config file")
parser.add_argument("--data_file", default="./cfg/coco.data",
help="path to data file")
parser.add_argument("--thresh", type=float, default=.25,
help="remove detections with lower confidence")
return parser.parse_args()
def check_arguments_errors(args):
assert 0 < args.thresh < 1, "Threshold should be a float between zero and one (non-inclusive)"
if not os.path.exists(args.config_file):
raise(ValueError("Invalid config path {}".format(os.path.abspath(args.config_file))))
if not os.path.exists(args.weights):
raise(ValueError("Invalid weight path {}".format(os.path.abspath(args.weights))))
if not os.path.exists(args.data_file):
raise(ValueError("Invalid data file path {}".format(os.path.abspath(args.data_file))))
if args.input and not os.path.exists(args.input):
raise(ValueError("Invalid image path {}".format(os.path.abspath(args.input))))
def check_batch_shape(images, batch_size):
"""
Image sizes should be the same width and height
"""
shapes = [image.shape for image in images]
if len(set(shapes)) > 1:
raise ValueError("Images don't have same shape")
if len(shapes) > batch_size:
raise ValueError("Batch size higher than number of images")
return shapes[0]
def load_images(images_path):
"""
If image path is given, return it directly
For txt file, read it and return each line as image path
In other case, it's a folder, return a list with names of each
jpg, jpeg and png file
"""
input_path_extension = images_path.split('.')[-1]
if input_path_extension in ['jpg', 'jpeg', 'png']:
return [images_path]
elif input_path_extension == "txt":
with open(images_path, "r") as f:
return f.read().splitlines()
else:
return glob.glob(
os.path.join(images_path, "*.jpg")) + \
glob.glob(os.path.join(images_path, "*.png")) + \
glob.glob(os.path.join(images_path, "*.jpeg"))
def prepare_batch(images, network, channels=3):
width = darknet.network_width(network)
height = darknet.network_height(network)
darknet_images = []
for image in images:
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_resized = cv2.resize(image_rgb, (width, height),
interpolation=cv2.INTER_LINEAR)
custom_image = image_resized.transpose(2, 0, 1)
darknet_images.append(custom_image)
batch_array = np.concatenate(darknet_images, axis=0)
batch_array = np.ascontiguousarray(batch_array.flat, dtype=np.float32)/255.0
darknet_images = batch_array.ctypes.data_as(darknet.POINTER(darknet.c_float))
return darknet.IMAGE(width, height, channels, darknet_images)
def image_detection(image_path, network, class_names, class_colors, thresh):
# Darknet doesn't accept numpy images.
# Create one with image we reuse for each detect
width = darknet.network_width(network)
height = darknet.network_height(network)
darknet_image = darknet.make_image(width, height, 3)
image = cv2.imread(image_path)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_resized = cv2.resize(image_rgb, (width, height),
interpolation=cv2.INTER_LINEAR)
darknet.copy_image_from_bytes(darknet_image, image_resized.tobytes())
detections = darknet.detect_image(network, class_names, darknet_image, thresh=thresh)
darknet.free_image(darknet_image)
image = darknet.draw_boxes(detections, image_resized, class_colors)
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB), detections
def batch_detection(network, images, class_names, class_colors,
thresh=0.25, hier_thresh=.5, nms=.45, batch_size=4):
image_height, image_width, _ = check_batch_shape(images, batch_size)
darknet_images = prepare_batch(images, network)
batch_detections = darknet.network_predict_batch(network, darknet_images, batch_size, image_width,
image_height, thresh, hier_thresh, None, 0, 0)
batch_predictions = []
for idx in range(batch_size):
num = batch_detections[idx].num
detections = batch_detections[idx].dets
if nms:
darknet.do_nms_obj(detections, num, len(class_names), nms)
predictions = darknet.remove_negatives(detections, class_names, num)
images[idx] = darknet.draw_boxes(predictions, images[idx], class_colors)
batch_predictions.append(predictions)
darknet.free_batch_detections(batch_detections, batch_size)
return images, batch_predictions
def image_classification(image, network, class_names):
width = darknet.network_width(network)
height = darknet.network_height(network)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_resized = cv2.resize(image_rgb, (width, height),
interpolation=cv2.INTER_LINEAR)
darknet_image = darknet.make_image(width, height, 3)
darknet.copy_image_from_bytes(darknet_image, image_resized.tobytes())
detections = darknet.predict_image(network, darknet_image)
predictions = [(name, detections[idx]) for idx, name in enumerate(class_names)]
darknet.free_image(darknet_image)
return sorted(predictions, key=lambda x: -x[1])
def convert2relative(image, bbox):
"""
YOLO format use relative coordinates for annotation
"""
x, y, w, h = bbox
height, width, _ = image.shape
return x/width, y/height, w/width, h/height
def save_annotations(name, image, detections, class_names):
"""
Files saved with image_name.txt and relative coordinates
"""
file_name = name.split(".")[:-1][0] + ".txt"
with open(file_name, "w") as f:
for label, confidence, bbox in detections:
x, y, w, h = convert2relative(image, bbox)
label = class_names.index(label)
f.write("{} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}\n".format(label, x, y, w, h, float(confidence)))
def batch_detection_example():
args = parser()
check_arguments_errors(args)
batch_size = 3
random.seed(3) # deterministic bbox colors
network, class_names, class_colors = darknet.load_network(
args.config_file,
args.data_file,
args.weights,
batch_size=batch_size
)
image_names = ['data/horses.jpg', 'data/horses.jpg', 'data/eagle.jpg']
images = [cv2.imread(image) for image in image_names]
images, detections, = batch_detection(network, images, class_names,
class_colors, batch_size=batch_size)
for name, image in zip(image_names, images):
cv2.imwrite(name.replace("data/", ""), image)
print(detections)
def main():
args = parser()
check_arguments_errors(args)
random.seed(3) # deterministic bbox colors
network, class_names, class_colors = darknet.load_network(
args.config_file,
args.data_file,
args.weights,
batch_size=args.batch_size
)
images = load_images(args.input)
index = 0
while True:
# loop asking for new image paths if no list is given
if args.input:
if index >= len(images):
break
image_name = images[index]
else:
image_name = input("Enter Image Path: ")
prev_time = time.time()
image, detections = image_detection(
image_name, network, class_names, class_colors, args.thresh
)
if args.save_labels:
save_annotations(image_name, image, detections, class_names)
darknet.print_detections(detections, args.ext_output)
fps = int(1/(time.time() - prev_time))
print("FPS: {}".format(fps))
if not args.dont_show:
cv2.imshow('Inference', image)
if cv2.waitKey() & 0xFF == ord('q'):
break
index += 1
if __name__ == "__main__":
# unconmment next line for an example of batch processing
# batch_detection_example()
main()