forked from open-mmlab/mmaction2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
304 lines (266 loc) · 11.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# Copyright (c) OpenMMLab. All rights reserved.
import copy as cp
import os
import os.path as osp
import time
import numpy as np
import torch
import torch.distributed as dist
from mmcv.runner import (DistSamplerSeedHook, EpochBasedRunner, OptimizerHook,
build_optimizer, get_dist_info)
from mmcv.runner.hooks import Fp16OptimizerHook
from ..core import (DistEvalHook, EvalHook, OmniSourceDistSamplerSeedHook,
OmniSourceRunner)
from ..datasets import build_dataloader, build_dataset
from ..utils import (PreciseBNHook, build_ddp, build_dp, default_device,
get_root_logger)
from .test import multi_gpu_test
def init_random_seed(seed=None, device=default_device, distributed=True):
"""Initialize random seed.
If the seed is not set, the seed will be automatically randomized,
and then broadcast to all processes to prevent some potential bugs.
Args:
seed (int, Optional): The seed. Default to None.
device (str): The device where the seed will be put on.
Default to 'cuda'.
distributed (bool): Whether to use distributed training.
Default: True.
Returns:
int: Seed to be used.
"""
if seed is not None:
return seed
# Make sure all ranks share the same random seed to prevent
# some potential bugs. Please refer to
# https://github.com/open-mmlab/mmdetection/issues/6339
rank, world_size = get_dist_info()
seed = np.random.randint(2**31)
if world_size == 1:
return seed
if rank == 0:
random_num = torch.tensor(seed, dtype=torch.int32, device=device)
else:
random_num = torch.tensor(0, dtype=torch.int32, device=device)
if distributed:
dist.broadcast(random_num, src=0)
return random_num.item()
def train_model(model,
dataset,
cfg,
distributed=False,
validate=False,
test=dict(test_best=False, test_last=False),
timestamp=None,
meta=None):
"""Train model entry function.
Args:
model (nn.Module): The model to be trained.
dataset (:obj:`Dataset`): Train dataset.
cfg (dict): The config dict for training.
distributed (bool): Whether to use distributed training.
Default: False.
validate (bool): Whether to do evaluation. Default: False.
test (dict): The testing option, with two keys: test_last & test_best.
The value is True or False, indicating whether to test the
corresponding checkpoint.
Default: dict(test_best=False, test_last=False).
timestamp (str | None): Local time for runner. Default: None.
meta (dict | None): Meta dict to record some important information.
Default: None
"""
logger = get_root_logger(log_level=cfg.log_level)
# prepare data loaders
dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
dataloader_setting = dict(
videos_per_gpu=cfg.data.get('videos_per_gpu', 1),
workers_per_gpu=cfg.data.get('workers_per_gpu', 1),
persistent_workers=cfg.data.get('persistent_workers', False),
num_gpus=len(cfg.gpu_ids),
dist=distributed,
seed=cfg.seed)
dataloader_setting = dict(dataloader_setting,
**cfg.data.get('train_dataloader', {}))
if cfg.omnisource:
# The option can override videos_per_gpu
train_ratio = cfg.data.get('train_ratio', [1] * len(dataset))
omni_videos_per_gpu = cfg.data.get('omni_videos_per_gpu', None)
if omni_videos_per_gpu is None:
dataloader_settings = [dataloader_setting] * len(dataset)
else:
dataloader_settings = []
for videos_per_gpu in omni_videos_per_gpu:
this_setting = cp.deepcopy(dataloader_setting)
this_setting['videos_per_gpu'] = videos_per_gpu
dataloader_settings.append(this_setting)
data_loaders = [
build_dataloader(ds, **setting)
for ds, setting in zip(dataset, dataloader_settings)
]
else:
data_loaders = [
build_dataloader(ds, **dataloader_setting) for ds in dataset
]
# put model on gpus
if distributed:
find_unused_parameters = cfg.get('find_unused_parameters', False)
# Sets the `find_unused_parameters` parameter in
# torch.nn.parallel.DistributedDataParallel
model = build_ddp(
model,
default_device,
default_args=dict(
device_ids=[int(os.environ['LOCAL_RANK'])],
broadcast_buffers=False,
find_unused_parameters=find_unused_parameters))
else:
model = build_dp(
model, default_device, default_args=dict(device_ids=cfg.gpu_ids))
# build runner
optimizer = build_optimizer(model, cfg.optimizer)
Runner = OmniSourceRunner if cfg.omnisource else EpochBasedRunner
runner = Runner(
model,
optimizer=optimizer,
work_dir=cfg.work_dir,
logger=logger,
meta=meta)
# an ugly workaround to make .log and .log.json filenames the same
runner.timestamp = timestamp
# fp16 setting
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
optimizer_config = Fp16OptimizerHook(
**cfg.optimizer_config, **fp16_cfg, distributed=distributed)
elif distributed and 'type' not in cfg.optimizer_config:
optimizer_config = OptimizerHook(**cfg.optimizer_config)
else:
optimizer_config = cfg.optimizer_config
# register hooks
runner.register_training_hooks(
cfg.lr_config,
optimizer_config,
cfg.checkpoint_config,
cfg.log_config,
cfg.get('momentum_config', None),
custom_hooks_config=cfg.get('custom_hooks', None))
# multigrid setting
multigrid_cfg = cfg.get('multigrid', None)
if multigrid_cfg is not None:
from mmaction.utils.multigrid import LongShortCycleHook
multigrid_scheduler = LongShortCycleHook(cfg)
runner.register_hook(multigrid_scheduler)
logger.info('Finish register multigrid hook')
# subbn3d aggregation is HIGH, as it should be done before
# saving and evaluation
from mmaction.utils.multigrid import SubBatchNorm3dAggregationHook
subbn3d_aggre_hook = SubBatchNorm3dAggregationHook()
runner.register_hook(subbn3d_aggre_hook, priority='VERY_HIGH')
logger.info('Finish register subbn3daggre hook')
# precise bn setting
if cfg.get('precise_bn', False):
precise_bn_dataset = build_dataset(cfg.data.train)
dataloader_setting = dict(
videos_per_gpu=cfg.data.get('videos_per_gpu', 1),
workers_per_gpu=1, # save memory and time
persistent_workers=cfg.data.get('persistent_workers', False),
num_gpus=len(cfg.gpu_ids),
dist=distributed,
seed=cfg.seed)
data_loader_precise_bn = build_dataloader(precise_bn_dataset,
**dataloader_setting)
precise_bn_hook = PreciseBNHook(data_loader_precise_bn,
**cfg.get('precise_bn'))
runner.register_hook(precise_bn_hook, priority='HIGHEST')
logger.info('Finish register precisebn hook')
if distributed:
if cfg.omnisource:
runner.register_hook(OmniSourceDistSamplerSeedHook())
else:
runner.register_hook(DistSamplerSeedHook())
if validate:
eval_cfg = cfg.get('evaluation', {})
val_dataset = build_dataset(cfg.data.val, dict(test_mode=True))
dataloader_setting = dict(
videos_per_gpu=cfg.data.get('videos_per_gpu', 1),
workers_per_gpu=cfg.data.get('workers_per_gpu', 1),
persistent_workers=cfg.data.get('persistent_workers', False),
# cfg.gpus will be ignored if distributed
num_gpus=len(cfg.gpu_ids),
dist=distributed,
shuffle=False)
dataloader_setting = dict(dataloader_setting,
**cfg.data.get('val_dataloader', {}))
val_dataloader = build_dataloader(val_dataset, **dataloader_setting)
eval_hook = DistEvalHook(val_dataloader, **eval_cfg) if distributed \
else EvalHook(val_dataloader, **eval_cfg)
runner.register_hook(eval_hook, priority='LOW')
if cfg.resume_from:
runner.resume(cfg.resume_from)
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
runner_kwargs = dict()
if cfg.omnisource:
runner_kwargs = dict(train_ratio=train_ratio)
runner.run(data_loaders, cfg.workflow, cfg.total_epochs, **runner_kwargs)
if distributed:
dist.barrier()
time.sleep(5)
if test['test_last'] or test['test_best']:
best_ckpt_path = None
if test['test_best']:
ckpt_paths = [x for x in os.listdir(cfg.work_dir) if 'best' in x]
ckpt_paths = [x for x in ckpt_paths if x.endswith('.pth')]
if len(ckpt_paths) == 0:
runner.logger.info('Warning: test_best set, but no ckpt found')
test['test_best'] = False
if not test['test_last']:
return
elif len(ckpt_paths) > 1:
epoch_ids = [
int(x.split('epoch_')[-1][:-4]) for x in ckpt_paths
]
best_ckpt_path = ckpt_paths[np.argmax(epoch_ids)]
else:
best_ckpt_path = ckpt_paths[0]
if best_ckpt_path:
best_ckpt_path = osp.join(cfg.work_dir, best_ckpt_path)
test_dataset = build_dataset(cfg.data.test, dict(test_mode=True))
gpu_collect = cfg.get('evaluation', {}).get('gpu_collect', False)
tmpdir = cfg.get('evaluation', {}).get('tmpdir',
osp.join(cfg.work_dir, 'tmp'))
dataloader_setting = dict(
videos_per_gpu=cfg.data.get('videos_per_gpu', 1),
workers_per_gpu=cfg.data.get('workers_per_gpu', 1),
persistent_workers=cfg.data.get('persistent_workers', False),
num_gpus=len(cfg.gpu_ids),
dist=distributed,
shuffle=False)
dataloader_setting = dict(dataloader_setting,
**cfg.data.get('test_dataloader', {}))
test_dataloader = build_dataloader(test_dataset, **dataloader_setting)
names, ckpts = [], []
if test['test_last']:
names.append('last')
ckpts.append(None)
if test['test_best'] and best_ckpt_path is not None:
names.append('best')
ckpts.append(best_ckpt_path)
for name, ckpt in zip(names, ckpts):
if ckpt is not None:
runner.load_checkpoint(ckpt)
outputs = multi_gpu_test(runner.model, test_dataloader, tmpdir,
gpu_collect)
rank, _ = get_dist_info()
if rank == 0:
out = osp.join(cfg.work_dir, f'{name}_pred.pkl')
test_dataset.dump_results(outputs, out)
eval_cfg = cfg.get('evaluation', {})
for key in [
'interval', 'tmpdir', 'start', 'gpu_collect',
'save_best', 'rule', 'by_epoch', 'broadcast_bn_buffers'
]:
eval_cfg.pop(key, None)
eval_res = test_dataset.evaluate(outputs, **eval_cfg)
runner.logger.info(f'Testing results of the {name} checkpoint')
for metric_name, val in eval_res.items():
runner.logger.info(f'{metric_name}: {val:.04f}')