forked from AllenDowney/ModSimPy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
modsim.py
880 lines (638 loc) · 22.3 KB
/
modsim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
"""
Code from Modeling and Simulation in Python.
Copyright 2020 Allen Downey
MIT License: https://opensource.org/licenses/MIT
"""
import logging
logger = logging.getLogger(name="modsim.py")
# make sure we have Python 3.6 or better
import sys
if sys.version_info < (3, 6):
logger.warning("modsim.py depends on Python 3.6 features.")
import inspect
import matplotlib.pyplot as plt
plt.rcParams['figure.dpi'] = 75
plt.rcParams['savefig.dpi'] = 300
plt.rcParams['figure.figsize'] = 6, 4
import numpy as np
import pandas as pd
import scipy
import scipy.optimize as spo
from scipy.interpolate import interp1d
from scipy.interpolate import InterpolatedUnivariateSpline
from scipy.integrate import solve_ivp
from types import SimpleNamespace
from copy import copy
def flip(p=0.5):
"""Flips a coin with the given probability.
p: float 0-1
returns: boolean (True or False)
"""
return np.random.random() < p
def cart2pol(x, y, z=None):
"""Convert Cartesian coordinates to polar.
x: number or sequence
y: number or sequence
z: number or sequence (optional)
returns: theta, rho OR theta, rho, z
"""
x = np.asarray(x)
y = np.asarray(y)
rho = np.hypot(x, y)
theta = np.arctan2(y, x)
if z is None:
return theta, rho
else:
return theta, rho, z
def pol2cart(theta, rho, z=None):
"""Convert polar coordinates to Cartesian.
theta: number or sequence in radians
rho: number or sequence
z: number or sequence (optional)
returns: x, y OR x, y, z
"""
x = rho * np.cos(theta)
y = rho * np.sin(theta)
if z is None:
return x, y
else:
return x, y, z
from numpy import linspace
def linrange(start, stop=None, step=1):
"""Make an array of equally spaced values.
start: first value
stop: last value (might be approximate)
step: difference between elements (should be consistent)
returns: NumPy array
"""
if stop is None:
stop = start
start = 0
n = int(round((stop-start) / step))
return linspace(start, stop, n+1)
def root_scalar(func, *args, **kwargs):
"""Finds the input value that minimizes `min_func`.
Wrapper for
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root_scalar.html
func: computes the function to be minimized
bracket: sequence of two values, lower and upper bounds of the range to be searched
args: any additional positional arguments are passed to func
kwargs: any keyword arguments are passed to root_scalar
returns: RootResults object
"""
bracket = kwargs.get('bracket', None)
if bracket is None or len(bracket) != 2:
msg = ("To run root_scalar, you have to provide a "
"`bracket` keyword argument with a sequence "
"of length 2.")
raise ValueError(msg)
try:
func(bracket[0], *args)
except Exception as e:
msg = ("Before running scipy.integrate.root_scalar "
"I tried running the function you provided "
"with `bracket[0]`, "
"and I got the following error:")
logger.error(msg)
raise (e)
underride(kwargs, rtol=1e-4)
res = spo.root_scalar(func, *args, **kwargs)
if not res.converged:
msg = ("scipy.optimize.root_scalar did not converge. "
"The message it returned is:\n" + res.flag)
raise ValueError(msg)
return res
def minimize_scalar(func, *args, **kwargs):
"""Finds the input value that minimizes `func`.
Wrapper for
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize_scalar.html
func: computes the function to be minimized
args: any additional positional arguments are passed to func
kwargs: any keyword arguments are passed to minimize_scalar
returns: OptimizeResult object
"""
bounds = kwargs.get('bounds', None)
if bounds is None or len(bounds) != 2:
msg = ("To run maximize_scalar or minimize_scalar, "
"you have to provide a `bounds` "
"keyword argument with a sequence "
"of length 2.")
raise ValueError(msg)
try:
func(bounds[0], *args)
except Exception as e:
msg = ("Before running scipy.integrate.minimize_scalar, "
"I tried running the function you provided "
"with the lower bound, "
"and I got the following error:")
logger.error(msg)
raise (e)
underride(kwargs, method='bounded')
res = spo.minimize_scalar(func, args=args, **kwargs)
if not res.success:
msg = ("minimize_scalar did not succeed."
"The message it returned is: \n" +
res.message)
raise Exception(msg)
return res
def maximize_scalar(max_func, *args, **kwargs):
"""Finds the input value that maximizes `max_func`.
Wrapper for https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize_scalar.html
min_func: computes the function to be maximized
args: any additional positional arguments are passed to max_func
options: any keyword arguments are passed as options to minimize_scalar
returns: ModSimSeries object
"""
def min_func(*args):
return -max_func(*args)
res = minimize_scalar(min_func, *args, **kwargs)
# we have to negate the function value before returning res
res.fun = -res.fun
return res
def run_solve_ivp(system, slope_func, **options):
"""Computes a numerical solution to a differential equation.
`system` must contain `init` with initial conditions,
`t_end` with the end time. Optionally, it can contain
`t_0` with the start time.
It should contain any other parameters required by the
slope function.
`options` can be any legal options of `scipy.integrate.solve_ivp`
system: System object
slope_func: function that computes slopes
returns: TimeFrame
"""
system = remove_units(system)
# make sure `system` contains `init`
if not hasattr(system, "init"):
msg = """It looks like `system` does not contain `init`
as a system variable. `init` should be a State
object that specifies the initial condition:"""
raise ValueError(msg)
# make sure `system` contains `t_end`
if not hasattr(system, "t_end"):
msg = """It looks like `system` does not contain `t_end`
as a system variable. `t_end` should be the
final time:"""
raise ValueError(msg)
# the default value for t_0 is 0
t_0 = getattr(system, "t_0", 0)
# try running the slope function with the initial conditions
try:
slope_func(t_0, system.init, system)
except Exception as e:
msg = """Before running scipy.integrate.solve_ivp, I tried
running the slope function you provided with the
initial conditions in `system` and `t=t_0` and I got
the following error:"""
logger.error(msg)
raise (e)
# get the list of event functions
events = options.get('events', [])
# if there's only one event function, put it in a list
try:
iter(events)
except TypeError:
events = [events]
for event_func in events:
# make events terminal unless otherwise specified
if not hasattr(event_func, 'terminal'):
event_func.terminal = True
# test the event function with the initial conditions
try:
event_func(t_0, system.init, system)
except Exception as e:
msg = """Before running scipy.integrate.solve_ivp, I tried
running the event function you provided with the
initial conditions in `system` and `t=t_0` and I got
the following error:"""
logger.error(msg)
raise (e)
# get dense output unless otherwise specified
if not 't_eval' in options:
underride(options, dense_output=True)
# run the solver
bunch = solve_ivp(slope_func, [t_0, system.t_end], system.init,
args=[system], **options)
# separate the results from the details
y = bunch.pop("y")
t = bunch.pop("t")
# get the column names from `init`, if possible
if hasattr(system.init, 'index'):
columns = system.init.index
else:
columns = range(len(system.init))
# evaluate the results at equally-spaced points
if options.get('dense_output', False):
try:
num = system.num
except AttributeError:
num = 101
t_final = t[-1]
t_array = linspace(t_0, t_final, num)
y_array = bunch.sol(t_array)
# pack the results into a TimeFrame
results = TimeFrame(y_array.T, index=t_array,
columns=columns)
else:
results = TimeFrame(y.T, index=t,
columns=columns)
return results, bunch
def leastsq(error_func, x0, *args, **options):
"""Find the parameters that yield the best fit for the data.
`x0` can be a sequence, array, Series, or Params
Positional arguments are passed along to `error_func`.
Keyword arguments are passed to `scipy.optimize.leastsq`
error_func: function that computes a sequence of errors
x0: initial guess for the best parameters
args: passed to error_func
options: passed to leastsq
:returns: Params object with best_params and ModSimSeries with details
"""
# override `full_output` so we get a message if something goes wrong
options["full_output"] = True
# run leastsq
t = scipy.optimize.leastsq(error_func, x0=x0, args=args, **options)
best_params, cov_x, infodict, mesg, ier = t
# pack the results into a ModSimSeries object
details = SimpleNamespace(cov_x=cov_x,
mesg=mesg,
ier=ier,
**infodict)
details.success = details.ier in [1,2,3,4]
# if we got a Params object, we should return a Params object
if isinstance(x0, Params):
best_params = Params(pd.Series(best_params, x0.index))
# return the best parameters and details
return best_params, details
def crossings(series, value):
"""Find the labels where the series passes through value.
The labels in series must be increasing numerical values.
series: Series
value: number
returns: sequence of labels
"""
values = series.values - value
interp = InterpolatedUnivariateSpline(series.index, values)
return interp.roots()
def has_nan(a):
"""Checks whether the an array contains any NaNs.
:param a: NumPy array or Pandas Series
:return: boolean
"""
return np.any(np.isnan(a))
def is_strictly_increasing(a):
"""Checks whether the elements of an array are strictly increasing.
:param a: NumPy array or Pandas Series
:return: boolean
"""
return np.all(np.diff(a) > 0)
def interpolate(series, **options):
"""Creates an interpolation function.
series: Series object
options: any legal options to scipy.interpolate.interp1d
returns: function that maps from the index to the values
"""
if has_nan(series.index):
msg = """The Series you passed to interpolate contains
NaN values in the index, which would result in
undefined behavior. So I'm putting a stop to that."""
raise ValueError(msg)
if not is_strictly_increasing(series.index):
msg = """The Series you passed to interpolate has an index
that is not strictly increasing, which would result in
undefined behavior. So I'm putting a stop to that."""
raise ValueError(msg)
# make the interpolate function extrapolate past the ends of
# the range, unless `options` already specifies a value for `fill_value`
underride(options, fill_value="extrapolate")
# call interp1d, which returns a new function object
x = series.index
y = series.values
interp_func = interp1d(x, y, **options)
return interp_func
def interpolate_inverse(series, **options):
"""Interpolate the inverse function of a Series.
series: Series object, represents a mapping from `a` to `b`
options: any legal options to scipy.interpolate.interp1d
returns: interpolation object, can be used as a function
from `b` to `a`
"""
inverse = pd.Series(series.index, index=series.values)
interp_func = interpolate(inverse, **options)
return interp_func
def gradient(series, **options):
"""Computes the numerical derivative of a series.
If the elements of series have units, they are dropped.
series: Series object
options: any legal options to np.gradient
returns: Series, same subclass as series
"""
x = series.index
y = series.values
a = np.gradient(y, x, **options)
return series.__class__(a, series.index)
def source_code(obj):
"""Prints the source code for a given object.
obj: function or method object
"""
print(inspect.getsource(obj))
def underride(d, **options):
"""Add key-value pairs to d only if key is not in d.
If d is None, create a new dictionary.
d: dictionary
options: keyword args to add to d
"""
if d is None:
d = {}
for key, val in options.items():
d.setdefault(key, val)
return d
def contour(df, **options):
"""Makes a contour plot from a DataFrame.
Wrapper for plt.contour
https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.contour.html
Note: columns and index must be numerical
df: DataFrame
options: passed to plt.contour
"""
fontsize = options.pop("fontsize", 12)
underride(options, cmap="viridis")
x = df.columns
y = df.index
X, Y = np.meshgrid(x, y)
cs = plt.contour(X, Y, df, **options)
plt.clabel(cs, inline=1, fontsize=fontsize)
def savefig(filename, **options):
"""Save the current figure.
Keyword arguments are passed along to plt.savefig
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
filename: string
"""
print("Saving figure to file", filename)
plt.savefig(filename, **options)
def decorate(**options):
"""Decorate the current axes.
Call decorate with keyword arguments like
decorate(title='Title',
xlabel='x',
ylabel='y')
The keyword arguments can be any of the axis properties
https://matplotlib.org/api/axes_api.html
"""
ax = plt.gca()
ax.set(**options)
handles, labels = ax.get_legend_handles_labels()
if handles:
ax.legend(handles, labels)
plt.tight_layout()
def remove_from_legend(bad_labels):
"""Removes some labels from the legend.
bad_labels: sequence of strings
"""
ax = plt.gca()
handles, labels = ax.get_legend_handles_labels()
handle_list, label_list = [], []
for handle, label in zip(handles, labels):
if label not in bad_labels:
handle_list.append(handle)
label_list.append(label)
ax.legend(handle_list, label_list)
class SettableNamespace(SimpleNamespace):
"""Contains a collection of parameters.
Used to make a System object.
Takes keyword arguments and stores them as attributes.
"""
def __init__(self, namespace=None, **kwargs):
super().__init__()
if namespace:
self.__dict__.update(namespace.__dict__)
self.__dict__.update(kwargs)
def get(self, name, default=None):
"""Look up a variable.
name: string varname
default: value returned if `name` is not present
"""
try:
return self.__getattribute__(name, default)
except AttributeError:
return default
def set(self, **variables):
"""Make a copy and update the given variables.
returns: Params
"""
new = copy(self)
new.__dict__.update(variables)
return new
def magnitude(x):
"""Returns the magnitude of a Quantity or number.
x: Quantity or number
returns: number
"""
return x.magnitude if hasattr(x, 'magnitude') else x
def remove_units(namespace):
"""Removes units from the values in a Namespace.
Only removes units from top-level values;
does not traverse nested values.
returns: new Namespace object
"""
res = copy(namespace)
for label, value in res.__dict__.items():
if isinstance(value, pd.Series):
value = remove_units_series(value)
res.__dict__[label] = magnitude(value)
return res
def remove_units_series(series):
"""Removes units from the values in a Series.
Only removes units from top-level values;
does not traverse nested values.
returns: new Series object
"""
res = copy(series)
for label, value in res.items():
res[label] = magnitude(value)
return res
class System(SettableNamespace):
"""Contains system parameters and their values.
Takes keyword arguments and stores them as attributes.
"""
pass
class Params(SettableNamespace):
"""Contains system parameters and their values.
Takes keyword arguments and stores them as attributes.
"""
pass
def State(**variables):
"""Contains the values of state variables."""
return pd.Series(variables, name='state')
def make_series(x, y, **options):
"""Make a Pandas Series.
x: sequence used as the index
y: sequence used as the values
returns: Pandas Series
"""
underride(options, name='values')
if isinstance(y, pd.Series):
y = y.values
series = pd.Series(y, index=x, **options)
series.index.name = 'index'
return series
def TimeSeries(*args, **kwargs):
"""Make a pd.Series object to represent a time series.
"""
if args or kwargs:
underride(kwargs, dtype=float)
series = pd.Series(*args, **kwargs)
else:
series = pd.Series([], dtype=float)
series.index.name = 'Time'
if 'name' not in kwargs:
series.name = 'Quantity'
return series
def SweepSeries(*args, **kwargs):
"""Make a pd.Series object to store results from a parameter sweep.
"""
if args or kwargs:
underride(kwargs, dtype=float)
series = pd.Series(*args, **kwargs)
else:
series = pd.Series([], dtype=np.float64)
series.index.name = 'Parameter'
if 'name' not in kwargs:
series.name = 'Metric'
return series
def show(obj):
"""Display a Series or Namespace as a DataFrame."""
if isinstance(obj, pd.Series):
df = pd.DataFrame(obj)
return df
elif hasattr(obj, '__dict__'):
return pd.DataFrame(pd.Series(obj.__dict__),
columns=['value'])
else:
return obj
def TimeFrame(*args, **kwargs):
"""DataFrame that maps from time to State.
"""
underride(kwargs, dtype=float)
return pd.DataFrame(*args, **kwargs)
def SweepFrame(*args, **kwargs):
"""DataFrame that maps from parameter value to SweepSeries.
"""
underride(kwargs, dtype=float)
return pd.DataFrame(*args, **kwargs)
def Vector(x, y, z=None, **options):
"""
"""
underride(options, name='component')
if z is None:
return pd.Series(dict(x=x, y=y), **options)
else:
return pd.Series(dict(x=x, y=y, z=z), **options)
## Vector functions (should work with any sequence)
def vector_mag(v):
"""Vector magnitude."""
return np.sqrt(np.dot(v, v))
def vector_mag2(v):
"""Vector magnitude squared."""
return np.dot(v, v)
def vector_angle(v):
"""Angle between v and the positive x axis.
Only works with 2-D vectors.
returns: angle in radians
"""
assert len(v) == 2
x, y = v
return np.arctan2(y, x)
def vector_polar(v):
"""Vector magnitude and angle.
returns: (number, angle in radians)
"""
return vector_mag(v), vector_angle(v)
def vector_hat(v):
"""Unit vector in the direction of v.
returns: Vector or array
"""
# check if the magnitude of the Quantity is 0
mag = vector_mag(v)
if mag == 0:
return v
else:
return v / mag
def vector_perp(v):
"""Perpendicular Vector (rotated left).
Only works with 2-D Vectors.
returns: Vector
"""
assert len(v) == 2
x, y = v
return Vector(-y, x)
def vector_dot(v, w):
"""Dot product of v and w.
returns: number or Quantity
"""
return np.dot(v, w)
def vector_cross(v, w):
"""Cross product of v and w.
returns: number or Quantity for 2-D, Vector for 3-D
"""
res = np.cross(v, w)
if len(v) == 3:
return Vector(*res)
else:
return res
def vector_proj(v, w):
"""Projection of v onto w.
returns: array or Vector with direction of w and units of v.
"""
w_hat = vector_hat(w)
return vector_dot(v, w_hat) * w_hat
def scalar_proj(v, w):
"""Returns the scalar projection of v onto w.
Which is the magnitude of the projection of v onto w.
returns: scalar with units of v.
"""
return vector_dot(v, vector_hat(w))
def vector_dist(v, w):
"""Euclidean distance from v to w, with units."""
if isinstance(v, list):
v = np.asarray(v)
return vector_mag(v - w)
def vector_diff_angle(v, w):
"""Angular difference between two vectors, in radians.
"""
if len(v) == 2:
return vector_angle(v) - vector_angle(w)
else:
# TODO: see http://www.euclideanspace.com/maths/algebra/
# vectors/angleBetween/
raise NotImplementedError()
def plot_segment(A, B, **options):
"""Plots a line segment between two Vectors.
For 3-D vectors, the z axis is ignored.
Additional options are passed along to plot().
A: Vector
B: Vector
"""
xs = A.x, B.x
ys = A.y, B.y
plt.plot(xs, ys, **options)
from time import sleep
from IPython.display import clear_output
def animate(results, draw_func, *args, interval=None):
"""Animate results from a simulation.
results: TimeFrame
draw_func: function that draws state
interval: time between frames in seconds
"""
plt.figure()
try:
for t, state in results.iterrows():
draw_func(t, state, *args)
plt.show()
if interval:
sleep(interval)
clear_output(wait=True)
draw_func(t, state, *args)
plt.show()
except KeyboardInterrupt:
pass