-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathto_onnx.py
67 lines (55 loc) · 1.84 KB
/
to_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import torch
import torchvision.transforms as T
import torch.onnx
import onnx
import onnxruntime
import numpy as np
import json
from mona.nn.model2 import Model2
# from mona.text import word_to_index, index_to_word
from mona.datagen import OnnxDataGen
from mona.config import config
from mona.text.construct_lexicon import get_lexicon
lexicon = get_lexicon(config["model_type"])
lexicon_size = lexicon.lexicon_size()
# name = "model_training.pt"
name = "model_acc100-epoch34.pt"
onnx_name = name.rsplit(".", 2)[0] + ".onnx"
# net = Model(len(word_to_index))
net = Model2(lexicon_size, in_channels=1)
net.load_state_dict(torch.load(f"models/{name}", weights_only=True))
net.eval()
to_tensor = T.ToTensor()
image_width = config["train_width"]
image_height = config["height"]
x = torch.zeros((1, 1, image_height, image_width))
# x = to_tensor(x)
print(x.shape)
# x.unsqueeze_(0) # (1, 3, 32, width)
y = net(x) # (width / 8, 1, lexicon_size)
print(x.size(), y.size())
# onnx_program = torch.onnx.dynamo_export(net, x)
# onnx_program.save(f"models/{onnx_name}")
torch.onnx.export(
net,
x,
f"models/{onnx_name}",
export_params=True,
opset_version=11,
do_constant_folding=True,
input_names=["input"],
output_names=["output"],
dynamic_axes={
"input": {3: "image_width"},
"output": {0: "seq_length"},
}
)
onnx_model = onnx.load(f"models/{onnx_name}")
onnx.checker.check_model(onnx_model)
ort_session = onnxruntime.InferenceSession(f"models/{onnx_name}")
ort_inputs = {ort_session.get_inputs()[0].name: x.numpy()}
ort_outs = ort_session.run(None, ort_inputs)
np.testing.assert_allclose(y.detach().numpy(), ort_outs[0], rtol=1e-3, atol=1e-5)
with open("models/index_2_word.json", "w", encoding="utf-8") as f:
j = json.dumps(lexicon.index_to_word, indent=4, ensure_ascii=False).encode("utf8")
f.write(j.decode())