forked from DaehwanKimLab/hisat2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
aligner_seed.cpp
530 lines (507 loc) · 16.1 KB
/
aligner_seed.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
/*
* Copyright 2011, Ben Langmead <[email protected]>
*
* This file is part of Bowtie 2.
*
* Bowtie 2 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Bowtie 2 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Bowtie 2. If not, see <http://www.gnu.org/licenses/>.
*/
#include "aligner_cache.h"
#include "aligner_seed.h"
#include "search_globals.h"
#include "gfm.h"
using namespace std;
/**
* Construct a constraint with no edits of any kind allowed.
*/
Constraint Constraint::exact() {
Constraint c;
c.edits = c.mms = c.ins = c.dels = c.penalty = 0;
return c;
}
/**
* Construct a constraint where the only constraint is a total
* penalty constraint.
*/
Constraint Constraint::penaltyBased(int pen) {
Constraint c;
c.penalty = pen;
return c;
}
/**
* Construct a constraint where the only constraint is a total
* penalty constraint related to the length of the read.
*/
Constraint Constraint::penaltyFuncBased(const SimpleFunc& f) {
Constraint c;
c.penFunc = f;
return c;
}
/**
* Construct a constraint where the only constraint is a total
* penalty constraint.
*/
Constraint Constraint::mmBased(int mms) {
Constraint c;
c.mms = mms;
c.edits = c.dels = c.ins = 0;
return c;
}
/**
* Construct a constraint where the only constraint is a total
* penalty constraint.
*/
Constraint Constraint::editBased(int edits) {
Constraint c;
c.edits = edits;
c.dels = c.ins = c.mms = 0;
return c;
}
//
// Some static methods for constructing some standard SeedPolicies
//
/**
* Given a read, depth and orientation, extract a seed data structure
* from the read and fill in the steps & zones arrays. The Seed
* contains the sequence and quality values.
*/
bool
Seed::instantiate(
const Read& read,
const BTDnaString& seq, // seed read sequence
const BTString& qual, // seed quality sequence
const Scoring& pens,
int depth,
int seedoffidx,
int seedtypeidx,
bool fw,
InstantiatedSeed& is) const
{
assert(overall != NULL);
int seedlen = len;
if((int)read.length() < seedlen) {
// Shrink seed length to fit read if necessary
seedlen = (int)read.length();
}
assert_gt(seedlen, 0);
is.steps.resize(seedlen);
is.zones.resize(seedlen);
// Fill in 'steps' and 'zones'
//
// The 'steps' list indicates which read character should be
// incorporated at each step of the search process. Often we will
// simply proceed from one end to the other, in which case the
// 'steps' list is ascending or descending. In some cases (e.g.
// the 2mm case), we might want to switch directions at least once
// during the search, in which case 'steps' will jump in the
// middle. When an element of the 'steps' list is negative, this
// indicates that the next
//
// The 'zones' list indicates which zone constraint is active at
// each step. Each element of the 'zones' list is a pair; the
// first pair element indicates the applicable zone when
// considering either mismatch or delete (ref gap) events, while
// the second pair element indicates the applicable zone when
// considering insertion (read gap) events. When either pair
// element is a negative number, that indicates that we are about
// to leave the zone for good, at which point we may need to
// evaluate whether we have reached the zone's budget.
//
switch(type) {
case SEED_TYPE_EXACT: {
for(int k = 0; k < seedlen; k++) {
is.steps[k] = -(seedlen - k);
// Zone 0 all the way
is.zones[k].first = is.zones[k].second = 0;
}
break;
}
case SEED_TYPE_LEFT_TO_RIGHT: {
for(int k = 0; k < seedlen; k++) {
is.steps[k] = k+1;
// Zone 0 from 0 up to ceil(len/2), then 1
is.zones[k].first = is.zones[k].second = ((k < (seedlen+1)/2) ? 0 : 1);
}
// Zone 1 ends at the RHS
is.zones[seedlen-1].first = is.zones[seedlen-1].second = -1;
break;
}
case SEED_TYPE_RIGHT_TO_LEFT: {
for(int k = 0; k < seedlen; k++) {
is.steps[k] = -(seedlen - k);
// Zone 0 from 0 up to floor(len/2), then 1
is.zones[k].first = ((k < seedlen/2) ? 0 : 1);
// Inserts: Zone 0 from 0 up to ceil(len/2)-1, then 1
is.zones[k].second = ((k < (seedlen+1)/2+1) ? 0 : 1);
}
is.zones[seedlen-1].first = is.zones[seedlen-1].second = -1;
break;
}
case SEED_TYPE_INSIDE_OUT: {
// Zone 0 from ceil(N/4) up to N-floor(N/4)
int step = 0;
for(int k = (seedlen+3)/4; k < seedlen - (seedlen/4); k++) {
is.zones[step].first = is.zones[step].second = 0;
is.steps[step++] = k+1;
}
// Zone 1 from N-floor(N/4) up
for(int k = seedlen - (seedlen/4); k < seedlen; k++) {
is.zones[step].first = is.zones[step].second = 1;
is.steps[step++] = k+1;
}
// No Zone 1 if seedlen is short (like 2)
//assert_eq(1, is.zones[step-1].first);
is.zones[step-1].first = is.zones[step-1].second = -1;
// Zone 2 from ((seedlen+3)/4)-1 down to 0
for(int k = ((seedlen+3)/4)-1; k >= 0; k--) {
is.zones[step].first = is.zones[step].second = 2;
is.steps[step++] = -(k+1);
}
assert_eq(2, is.zones[step-1].first);
is.zones[step-1].first = is.zones[step-1].second = -2;
assert_eq(seedlen, step);
break;
}
default:
throw 1;
}
// Instantiate constraints
for(int i = 0; i < 3; i++) {
is.cons[i] = zones[i];
is.cons[i].instantiate(read.length());
}
is.overall = *overall;
is.overall.instantiate(read.length());
// Take a sweep through the seed sequence. Consider where the Ns
// occur and how zones are laid out. Calculate the maximum number
// of positions we can jump over initially (e.g. with the ftab) and
// perhaps set this function's return value to false, indicating
// that the arrangements of Ns prevents the seed from aligning.
bool streak = true;
is.maxjump = 0;
bool ret = true;
bool ltr = (is.steps[0] > 0); // true -> left-to-right
for(size_t i = 0; i < is.steps.size(); i++) {
assert_neq(0, is.steps[i]);
int off = is.steps[i];
off = abs(off)-1;
Constraint& cons = is.cons[abs(is.zones[i].first)];
int c = seq[off]; assert_range(0, 4, c);
int q = qual[off];
if(ltr != (is.steps[i] > 0) || // changed direction
is.zones[i].first != 0 || // changed zone
is.zones[i].second != 0) // changed zone
{
streak = false;
}
if(c == 4) {
// Induced mismatch
if(cons.canN(q, pens)) {
cons.chargeN(q, pens);
} else {
// Seed disqualified due to arrangement of Ns
return false;
}
}
if(streak) is.maxjump++;
}
is.seedoff = depth;
is.seedoffidx = seedoffidx;
is.fw = fw;
is.s = *this;
return ret;
}
/**
* Return a set consisting of 1 seed encapsulating an exact matching
* strategy.
*/
void
Seed::zeroMmSeeds(int ln, EList<Seed>& pols, Constraint& oall) {
oall.init();
// Seed policy 1: left-to-right search
pols.expand();
pols.back().len = ln;
pols.back().type = SEED_TYPE_EXACT;
pols.back().zones[0] = Constraint::exact();
pols.back().zones[1] = Constraint::exact();
pols.back().zones[2] = Constraint::exact(); // not used
pols.back().overall = &oall;
}
/**
* Return a set of 2 seeds encapsulating a half-and-half 1mm strategy.
*/
void
Seed::oneMmSeeds(int ln, EList<Seed>& pols, Constraint& oall) {
oall.init();
// Seed policy 1: left-to-right search
pols.expand();
pols.back().len = ln;
pols.back().type = SEED_TYPE_LEFT_TO_RIGHT;
pols.back().zones[0] = Constraint::exact();
pols.back().zones[1] = Constraint::mmBased(1);
pols.back().zones[2] = Constraint::exact(); // not used
pols.back().overall = &oall;
// Seed policy 2: right-to-left search
pols.expand();
pols.back().len = ln;
pols.back().type = SEED_TYPE_RIGHT_TO_LEFT;
pols.back().zones[0] = Constraint::exact();
pols.back().zones[1] = Constraint::mmBased(1);
pols.back().zones[1].mmsCeil = 0;
pols.back().zones[2] = Constraint::exact(); // not used
pols.back().overall = &oall;
}
/**
* Return a set of 3 seeds encapsulating search roots for:
*
* 1. Starting from the left-hand side and searching toward the
* right-hand side allowing 2 mismatches in the right half.
* 2. Starting from the right-hand side and searching toward the
* left-hand side allowing 2 mismatches in the left half.
* 3. Starting (effectively) from the center and searching out toward
* both the left and right-hand sides, allowing one mismatch on
* either side.
*
* This is not exhaustive. There are 2 mismatch cases mised; if you
* imagine the seed as divided into four successive quarters A, B, C
* and D, the cases we miss are when mismatches occur in A and C or B
* and D.
*/
void
Seed::twoMmSeeds(int ln, EList<Seed>& pols, Constraint& oall) {
oall.init();
// Seed policy 1: left-to-right search
pols.expand();
pols.back().len = ln;
pols.back().type = SEED_TYPE_LEFT_TO_RIGHT;
pols.back().zones[0] = Constraint::exact();
pols.back().zones[1] = Constraint::mmBased(2);
pols.back().zones[2] = Constraint::exact(); // not used
pols.back().overall = &oall;
// Seed policy 2: right-to-left search
pols.expand();
pols.back().len = ln;
pols.back().type = SEED_TYPE_RIGHT_TO_LEFT;
pols.back().zones[0] = Constraint::exact();
pols.back().zones[1] = Constraint::mmBased(2);
pols.back().zones[1].mmsCeil = 1; // Must have used at least 1 mismatch
pols.back().zones[2] = Constraint::exact(); // not used
pols.back().overall = &oall;
// Seed policy 3: inside-out search
pols.expand();
pols.back().len = ln;
pols.back().type = SEED_TYPE_INSIDE_OUT;
pols.back().zones[0] = Constraint::exact();
pols.back().zones[1] = Constraint::mmBased(1);
pols.back().zones[1].mmsCeil = 0; // Must have used at least 1 mismatch
pols.back().zones[2] = Constraint::mmBased(1);
pols.back().zones[2].mmsCeil = 0; // Must have used at least 1 mismatch
pols.back().overall = &oall;
}
/**
* Types of actions that can be taken by the SeedAligner.
*/
enum {
SA_ACTION_TYPE_RESET = 1,
SA_ACTION_TYPE_SEARCH_SEED, // 2
SA_ACTION_TYPE_FTAB, // 3
SA_ACTION_TYPE_FCHR, // 4
SA_ACTION_TYPE_MATCH, // 5
SA_ACTION_TYPE_EDIT // 6
};
#define MIN(x, y) ((x < y) ? x : y)
#ifdef ALIGNER_SEED_MAIN
#include <getopt.h>
#include <string>
/**
* Parse an int out of optarg and enforce that it be at least 'lower';
* if it is less than 'lower', than output the given error message and
* exit with an error and a usage message.
*/
static int parseInt(const char *errmsg, const char *arg) {
long l;
char *endPtr = NULL;
l = strtol(arg, &endPtr, 10);
if (endPtr != NULL) {
return (int32_t)l;
}
cerr << errmsg << endl;
throw 1;
return -1;
}
enum {
ARG_NOFW = 256,
ARG_NORC,
ARG_MM,
ARG_SHMEM,
ARG_TESTS,
ARG_RANDOM_TESTS,
ARG_SEED
};
static const char *short_opts = "vCt";
static struct option long_opts[] = {
{(char*)"verbose", no_argument, 0, 'v'},
{(char*)"color", no_argument, 0, 'C'},
{(char*)"timing", no_argument, 0, 't'},
{(char*)"nofw", no_argument, 0, ARG_NOFW},
{(char*)"norc", no_argument, 0, ARG_NORC},
{(char*)"mm", no_argument, 0, ARG_MM},
{(char*)"shmem", no_argument, 0, ARG_SHMEM},
{(char*)"tests", no_argument, 0, ARG_TESTS},
{(char*)"random", required_argument, 0, ARG_RANDOM_TESTS},
{(char*)"seed", required_argument, 0, ARG_SEED},
};
static void printUsage(ostream& os) {
os << "Usage: ac [options]* <index> <patterns>" << endl;
os << "Options:" << endl;
os << " --mm memory-mapped mode" << endl;
os << " --shmem shared memory mode" << endl;
os << " --nofw don't align forward-oriented read" << endl;
os << " --norc don't align reverse-complemented read" << endl;
os << " -t/--timing show timing information" << endl;
os << " -C/--color colorspace mode" << endl;
os << " -v/--verbose talkative mode" << endl;
}
bool gNorc = false;
bool gNofw = false;
bool gColor = false;
int gVerbose = 0;
int gGapBarrier = 1;
bool gColorExEnds = true;
int gSnpPhred = 30;
bool gReportOverhangs = true;
extern void aligner_seed_tests();
extern void aligner_random_seed_tests(
int num_tests,
uint32_t qslo,
uint32_t qshi,
bool color,
uint32_t seed);
/**
* A way of feeding simply tests to the seed alignment infrastructure.
*/
int main(int argc, char **argv) {
bool useMm = false;
bool useShmem = false;
bool mmSweep = false;
bool noRefNames = false;
bool sanity = false;
bool timing = false;
int option_index = 0;
int seed = 777;
int next_option;
do {
next_option = getopt_long(
argc, argv, short_opts, long_opts, &option_index);
switch (next_option) {
case 'v': gVerbose = true; break;
case 'C': gColor = true; break;
case 't': timing = true; break;
case ARG_NOFW: gNofw = true; break;
case ARG_NORC: gNorc = true; break;
case ARG_MM: useMm = true; break;
case ARG_SHMEM: useShmem = true; break;
case ARG_SEED: seed = parseInt("", optarg); break;
case ARG_TESTS: {
aligner_seed_tests();
aligner_random_seed_tests(
100, // num references
100, // queries per reference lo
400, // queries per reference hi
false, // true -> generate colorspace reference/reads
18); // pseudo-random seed
return 0;
}
case ARG_RANDOM_TESTS: {
seed = parseInt("", optarg);
aligner_random_seed_tests(
100, // num references
100, // queries per reference lo
400, // queries per reference hi
false, // true -> generate colorspace reference/reads
seed); // pseudo-random seed
return 0;
}
case -1: break;
default: {
cerr << "Unknown option: " << (char)next_option << endl;
printUsage(cerr);
exit(1);
}
}
} while(next_option != -1);
char *reffn;
if(optind >= argc) {
cerr << "No reference; quitting..." << endl;
return 1;
}
reffn = argv[optind++];
if(optind >= argc) {
cerr << "No reads; quitting..." << endl;
return 1;
}
string gfmBase(reffn);
BitPairReference ref(
gfmBase, // base path
gColor, // whether we expect it to be colorspace
sanity, // whether to sanity-check reference as it's loaded
NULL, // fasta files to sanity check reference against
NULL, // another way of specifying original sequences
false, // true -> infiles (2 args ago) contains raw seqs
useMm, // use memory mapping to load index?
useShmem, // use shared memory (not memory mapping)
mmSweep, // touch all the pages after memory-mapping the index
gVerbose, // verbose
gVerbose); // verbose but just for startup messages
Timer *t = new Timer(cerr, "Time loading fw index: ", timing);
GFM gfmFw(
gfmBase,
0, // don't need entireReverse for fw index
true, // index is for the forward direction
-1, // offrate (irrelevant)
useMm, // whether to use memory-mapped files
useShmem, // whether to use shared memory
mmSweep, // sweep memory-mapped files
!noRefNames, // load names?
false, // load SA sample?
true, // load ftab?
true, // load rstarts?
NULL, // reference map, or NULL if none is needed
gVerbose, // whether to be talkative
gVerbose, // talkative during initialization
false, // handle memory exceptions, don't pass them up
sanity);
delete t;
t = new Timer(cerr, "Time loading bw index: ", timing);
GFM gfmBw(
gfmBase + ".rev",
1, // need entireReverse
false, // index is for the backward direction
-1, // offrate (irrelevant)
useMm, // whether to use memory-mapped files
useShmem, // whether to use shared memory
mmSweep, // sweep memory-mapped files
!noRefNames, // load names?
false, // load SA sample?
true, // load ftab?
false, // load rstarts?
NULL, // reference map, or NULL if none is needed
gVerbose, // whether to be talkative
gVerbose, // talkative during initialization
false, // handle memory exceptions, don't pass them up
sanity);
delete t;
for(int i = optind; i < argc; i++) {
}
}
#endif