forked from tammojan/facet-calibration
-
Notifications
You must be signed in to change notification settings - Fork 0
/
selfcalv19_ww_jsm.py
executable file
·556 lines (438 loc) · 19.2 KB
/
selfcalv19_ww_jsm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
import matplotlib
#matplotlib.use('GTK')
import numpy
import os
import sys
from scipy import interpolate
import time
from subprocess import Popen, PIPE, STDOUT
import pyrap.tables as pt
import pyrap.images as pim
import uuid
from numpy import pi
import pwd
import logging
from facet_utilities import run, bg
from jsm_util import get_config
# Import functions from the main implementation
from selfcalv19_ww_cep3 import create_merged_parmdb_spline, create_merged_parmdb,\
runbbs, create_scalarphase_parset, create_scalarphase_parset_p, create_amponly_parset,\
create_scalarphase_parset_p2, get_group, make_image
# v19
# - change ndppp job submit for better control over jobs running
# - add hardcoded groups (get_group)
def find_imagenoise(imagename):
"""
Finds the noise level of an image
"""
im = pim.image(imagename)
image = numpy.copy(im.getdata())
mean, rms = meanclip(image)
#im.close()
return rms, numpy.abs(numpy.max(image)/numpy.min(image))
def meanclip(indata, clipsig=4.0, maxiter=10, converge_num=0.001, verbose=0):
"""
Computes an iteratively sigma-clipped mean on a
data set. Clipping is done about median, but mean
is returned.
.. note:: MYMEANCLIP routine from ACS library.
:History:
* 21/10/1998 Written by RSH, RITSS
* 20/01/1999 Added SUBS, fixed misplaced paren on float call, improved doc. RSH
* 24/11/2009 Converted to Python. PLL.
Examples
--------
>>> mean, sigma = meanclip(indata)
Parameters
----------
indata: array_like
Input data.
clipsig: float
Number of sigma at which to clip.
maxiter: int
Ceiling on number of clipping iterations.
converge_num: float
If the proportion of rejected pixels is less than
this fraction, the iterations stop.
verbose: {0, 1}
Print messages to screen?
Returns
-------
mean: float
N-sigma clipped mean.
sigma: float
Standard deviation of remaining pixels.
"""
# Flatten array
skpix = indata.reshape( indata.size, )
ct = indata.size
iiter = 0
c1 = 1.0
c2 = 0.0
while (c1 >= c2) and (iiter < maxiter):
lastct = ct
medval = numpy.median(skpix)
sig = numpy.std(skpix)
wsm = numpy.where( abs(skpix-medval) < clipsig*sig )
ct = len(wsm[0])
if ct > 0:
skpix = skpix[wsm]
c1 = abs(ct - lastct)
c2 = converge_num * lastct
iiter += 1
# End of while loop
mean = numpy.mean( skpix )
sigma = robust_sigma( skpix )
#if verbose:
prf = 'MEANCLIP:'
logging.debug('%s %.1f-sigma clipped mean' % (prf, clipsig))
logging.debug('%s Mean computed in %i iterations' % (prf, iiter))
logging.debug('%s Mean = %.6f, sigma = %.6f' % (prf, mean, sigma))
return mean, sigma
def robust_sigma(in_y, zero=0):
"""
Calculate a resistant estimate of the dispersion of
a distribution. For an uncontaminated distribution,
this is identical to the standard deviation.
Use the median absolute deviation as the initial
estimate, then weight points using Tukey Biweight.
See, for example, Understanding Robust and
Exploratory Data Analysis, by Hoaglin, Mosteller
and Tukey, John Wiley and Sons, 1983.
.. note:: ROBUST_SIGMA routine from IDL ASTROLIB.
:History:
* H Freudenreich, STX, 8/90
* Replace MED call with MEDIAN(/EVEN), W. Landsman, December 2001
* Converted to Python by P. L. Lim, 11/2009
Examples
--------
>>> result = robust_sigma(in_y, zero=1)
Parameters
----------
in_y: array_like
Vector of quantity for which the dispersion is
to be calculated
zero: int
If set, the dispersion is calculated w.r.t. 0.0
rather than the central value of the vector. If
Y is a vector of residuals, this should be set.
Returns
-------
out_val: float
Dispersion value. If failed, returns -1.
"""
# Flatten array
y = in_y.reshape(in_y.size, )
eps = 1.0E-20
c1 = 0.6745
c2 = 0.80
c3 = 6.0
c4 = 5.0
c_err = -1.0
min_points = 3
if zero:
y0 = 0.0
else:
y0 = numpy.median(y)
dy = y - y0
del_y = abs( dy )
# First, the median absolute deviation MAD about the median:
mad = numpy.median( del_y ) / c1
# If the MAD=0, try the MEAN absolute deviation:
if mad < eps:
mad = numpy.mean( del_y ) / c2
if mad < eps:
return 0.0
# Now the biweighted value:
u = dy / (c3 * mad)
uu = u*u
q = numpy.where(uu <= 1.0)
count = len(q[0])
if count < min_points:
logging.warning('ROBUST_SIGMA: This distribution is TOO WEIRD! Returning {}'.format(c_err))
return c_err
numerator = numpy.sum( (y[q]-y0)**2.0 * (1.0-uu[q])**4.0 )
n = y.size
den1 = numpy.sum( (1.0-uu[q]) * (1.0-c4*uu[q]) )
siggma = n * numerator / ( den1 * (den1 - 1.0) )
if siggma > 0:
out_val = numpy.sqrt( siggma )
else:
out_val = 0.0
return out_val
def do_selfcal(mslist, cluster, atrous_do, imsize, nterms, cellsizetime_a, cellsizetime_p,
TECi, clocki, HRi, region, clusterdesc, dbserver, dbuser, dbname, SCRIPTPATH,
ncores=8, config=None, model=None):
TEC = False
FFT = False
clock= False
HR = False # high dynamic range
if TECi == "True":
TEC = True
if clocki == "True":
clock = True
if HRi == "HD":
HR = True
if imsize <=2048:
wplanes = 1
FFT = True # FFT image into MODEL_DATA
if imsize >= 512:
wplanes = 64
if imsize > 799:
wplanes = 96
if imsize > 1023:
wplanes = 128
if imsize > 1599:
wplanes = 180
if imsize > 1800:
wplanes = 196
if imsize > 2049:
wplanes = 256
#if imsize > 3000:
# wplanes = 448
#if imsize > 4095:
# wplanes = 512
logging.info('mslist {}'.format(mslist))
logging.info('source {}'.format(cluster))
logging.info('atrous_do {}'.format(atrous_do))
logging.info('imsize {} '.format(imsize))
logging.info('TEC is {} and clock is {}'.format(TEC, clock))
msinputlist = ''
for m in mslist:
msinputlist = msinputlist + ' ' + m
#if len(mslist) == 29:
#group = "9,10,10"
#elif len(mslist) == 28:
#group = "7,7,7,7"
#elif len(mslist) == 20:
##group = "10,10"
#group = "7,7,6"
#elif len(mslist) == 16:
#group = "8,8"
#else:
#group = str(len(mslist))
group = get_group(mslist)
logging.info('GROUP {}'.format(group))
uvrange = '80'
#uvrange = '400'
merge_parmdb = True
phasors = False # if true only solve for amps on long timescales
smooth = False # seems that smooth does not help the selfcal (various reasons for that)
# 1. boundaries of flagged vs non-flagged data are sharp (should not be smoothed)
# 2. there sre some strong ampl various at low elevations
smooth = True # sometimes almost 0.0 amplitude, causes ripples
phasezero = True # reset phases from ap calibration
## Loop parameters
rms_old = 1.e9 # bad values to start with
dynamicrange_old = 1. # low value to start with so we get into the while loop
im_count = 4
number_forced_selfcalcycles = 8
factor = 1.0125 # demand 1.25% improvement
max_selfcalcycles = 16
model_facet = ""
if config is not None:
number_forced_selfcalcycles = get_config("selfcal_forced_cycles", config, default=8)
factor = get_config("selfcal_factor", config, default=1.0125)
max_selfcalcycles = get_config("selfcal_max_cycles", config, default=16)
empty_mask_cycle = get_config("selfcal_empty_cycle", config, default=5)
model_facet = get_config("model_facet", config, default="")
logging.info('Selfcal loop params: forced {}; empty mask {}; max {}; factor {}; model {}; model_facet {}'.format(
number_forced_selfcalcycles, empty_mask_cycle, max_selfcalcycles, factor, model, model_facet))
#####################
#####################
#### MAKE IMAGE 0 ###
logging.info('Make image 0')
imout,mask = make_image(mslist, cluster, '0', 10, 6, nterms, atrous_do, imsize, region, ncores, SCRIPTPATH)
#####################
### CALIBRATE WITH BBS PHASE ONLY 1 ###
# create skymodel for BBS
run(SCRIPTPATH+'/casapy2bbs.py -m '+ mask + ' ' +'-t ' + str(nterms)+ ' ' + imout+'.model ' + imout+'.skymodel')
if FFT:
os.system('casapy --nogui -c '+SCRIPTPATH+'/ft_v2.py ' + msinputlist + ' ' + imout+'.model' \
+ ' ' + str(nterms) + ' '+ str(wplanes))
# phase only calibrate
if model_facet:
skymodel = model_facet
logging.info('Using config model '+model_facet+" skip model from image 0")
else:
skymodel = imout+'.skymodel'
parset = create_scalarphase_parset(cellsizetime_p, TEC, clock, group, FFT, uvrange)
logging.debug("Run BBS (pre-image 1) with skymodel: {}".format(skymodel))
runbbs(mslist, skymodel, parset, 'instrument', False, TEC, clusterdesc, dbserver, dbuser, dbname)
#NOTE WORK FROM MODEL_DATA (contains correct phase data from 10SB calibration)
######################################
### MAKE IMAGE 1 ###
logging.info('Make image 1')
imout,mask = make_image(mslist, cluster, '1', 15, 15, nterms, atrous_do, imsize, region, ncores, SCRIPTPATH)
####################
### CALIBRATE WITH BBS PHASE ONLY 2 ###
# create skymodel for BBS
logging.debug("".format())
run(SCRIPTPATH+'/casapy2bbs.py -m '+ mask + ' ' +'-t ' + str(nterms)+ ' ' + imout+'.model ' + imout+'.skymodel')
if FFT:
run('casapy --nogui -c '+SCRIPTPATH+'/ft_v2.py ' + msinputlist + ' ' + imout+'.model' \
+ ' ' + str(nterms) + ' '+ str(wplanes))
# phase only calibrate
skymodel = imout+'.skymodel'
parset = create_scalarphase_parset(cellsizetime_p, TEC, clock, group, FFT, uvrange)
logging.debug("Run BBS (pre-image 2) with skymodel: {}".format(skymodel))
runbbs(mslist, skymodel, parset, 'instrument', False, TEC,clusterdesc, dbserver, dbuser, dbname) #NOTE WORK FROM MODEL_DATA (contains correct phase data from 10SB calibration)
######################################
### MAKE IMAGE 2 ###
logging.info('Make image 2')
imout,mask = make_image(mslist, cluster, '2', 15, 15, nterms, atrous_do, imsize, region, ncores, SCRIPTPATH)
####################
### CALIBRATE WITH BBS PHASE+AMP 1 ###
run(SCRIPTPATH+'/casapy2bbs.py -m '+ mask + ' ' +'-t ' + str(nterms)+ ' ' + imout+'.model ' + imout+'.skymodel')
if FFT:
run('casapy --nogui -c '+SCRIPTPATH+'/ft_v2.py ' + msinputlist + ' ' + imout+'.model' \
+ ' ' + str(nterms) + ' '+ str(wplanes))
skymodel = imout+'.skymodel'
parset = create_scalarphase_parset_p(cellsizetime_p, TEC, clock, group, FFT, uvrange)
# solve +apply phases
logging.debug("Run BBS (pre-image 3) with skymodel: {}".format(skymodel))
runbbs(mslist, skymodel, parset, 'instrument_phase0', False, TEC, clusterdesc, dbserver, dbuser, dbname)
# solve amps
parmdb = 'instrument_amps0'
parset = create_amponly_parset(cellsizetime_a, FFT, uvrange)
runbbs(mslist, skymodel, parset, parmdb, False, False, clusterdesc, dbserver, dbuser, dbname)
for ms in mslist:
# remove outliers from the solutions
if phasors:
run('python '+SCRIPTPATH+'/smoothcal_rx42.py ' + ms + ' ' + ms+'/'+parmdb + ' ' + ms+'/'+parmdb+'_smoothed'+' > '+ms+'_'+parmdb+'_smoothed.log')
else:
run('python '+SCRIPTPATH+'/smoothcal_a2256_nophasors.py ' + ms + ' ' + ms+'/'+parmdb + ' ' + ms+'/'+parmdb+'_smoothed'+' > '+ms+'_'+parmdb+'_smoothed.log')
# apply amps
if smooth:
runbbs(mslist, skymodel,SCRIPTPATH+'/apply_amplitudeonly.parset', parmdb+'_smoothed', True, False, clusterdesc, dbserver, dbuser, dbname)
else:
runbbs(mslist, skymodel,SCRIPTPATH+'/apply_amplitudeonly.parset', parmdb, True, False, clusterdesc, dbserver, dbuser, dbname)
### MAKE IMAGE 3 ###
logging.info('Make image 3')
imout,mask = make_image(mslist, cluster, '3', 10, 10, nterms, atrous_do, imsize, region, ncores, SCRIPTPATH)
####################
# LOOP
####################
rms, dynamicrange = find_imagenoise(imout + '.image')
while (((dynamicrange/factor) > dynamicrange_old) or ((rms*factor) < rms_old)):
logging.info('Starting selfcal loop {}'.format(im_count))
#### CALIBRATE BBS PHASE+AMP 2 (LOOP) ###
# make model
run(SCRIPTPATH+'/casapy2bbs.py -m '+ mask + ' ' +'-t ' + str(nterms)+ ' ' + imout+'.model ' + imout+'.skymodel')
if FFT:
run('casapy --nogui -c '+SCRIPTPATH+'/ft_v2.py ' + msinputlist + ' ' + imout+'.model' \
+ ' ' + str(nterms) + ' '+ str(wplanes))
#parmdb keep from previous step
skymodel = imout+'.skymodel'
# reset the phases from instrument_amps0 to zero to prevent large phase corrections from incorrect AP solve
# FIXME: Is this used?
if phasezero:
inputparmdb = parmdb +'_smoothed'
outputparmdb = parmdb +'_smoothed_phasezero'
for ms in mslist:
run('python '+SCRIPTPATH+'/setphasezero.py ' + ms + ' ' + ms+'/'+inputparmdb +' ' + ms+'/'+outputparmdb)
else:
outputparmdb = parmdb +'_smoothed'
# phase only cal
skymodel = imout+'.skymodel'
parset = create_scalarphase_parset_p(cellsizetime_p, TEC, clock, group, FFT, uvrange)
logging.debug("Run BBS (pre-image {}) with skymodel: {}".format(im_count, skymodel))
runbbs(mslist, skymodel, parset, 'instrument_phase1', False, TEC, clusterdesc, dbserver, dbuser, dbname)
# solve amps
parmdb = 'instrument_amps1'
parset = create_amponly_parset(cellsizetime_a, FFT, uvrange)
runbbs(mslist, skymodel, parset,parmdb, False, False, clusterdesc, dbserver, dbuser, dbname)
for ms in mslist:
# remove outliers from the solutions
if phasors:
run('python '+SCRIPTPATH+'/smoothcal_rx42.py ' + ms + ' ' + ms+'/'+parmdb + ' ' + ms+'/'+parmdb+'_smoothed'+' > '+ms+'_'+parmdb+'_smoothed.log')
else:
run('python '+SCRIPTPATH+'/smoothcal_a2256_nophasors.py ' + ms + ' ' + ms+'/'+parmdb + ' ' + ms+'/'+parmdb+'_smoothed'+' > '+ms+'_'+parmdb+'_smoothed.log')
# apply amps
if smooth:
runbbs(mslist, skymodel,SCRIPTPATH+'/apply_amplitudeonly.parset',parmdb+'_smoothed', True, False, clusterdesc, dbserver, dbuser, dbname)
else:
runbbs(mslist, skymodel,SCRIPTPATH+'/apply_amplitudeonly.parset',parmdb, True, False, clusterdesc, dbserver, dbuser, dbname)
### MAKE IMAGE #N ###
logging.info('Make image {}'.format(im_count))
# Do not use the initial mask in the final cycles
if im_count >= empty_mask_cycle:
region_im = "empty"
else:
region_im = region
imout,mask = make_image(mslist, cluster, str(im_count), 10, 10, nterms, atrous_do, imsize, region_im, ncores, SCRIPTPATH)
## Prepare the next iteration
im_count += 1
# save previous values to compare with
rms_old = rms
dynamicrange_old = dynamicrange
if nterms < 2:
rms, dynamicrange = find_imagenoise(imout + '.image')
else:
rms, dynamicrange = find_imagenoise(imout + '.image.tt0')
logging.info('IMAGE STATISTICS {}, {}'.format(rms, dynamicrange))
if im_count < number_forced_selfcalcycles:
rms_old = 1.e9 # bad values to start with
dynamicrange_old = 1.
logging.debug("Count below the number of forced selfcal cycles. Force new loop.")
if im_count >= max_selfcalcycles:
logging.info("Maximum number of cycles ({}) reached. Leaving selfcal loop.".format(max_selfcalcycles))
break
### CREATE FINAL MODEL ###
logging.info('Create final model')
skymodelf= 'im_cluster'+cluster+ '.final.skymodel'
run(SCRIPTPATH+'/casapy2bbs.py -m '+ mask + ' ' +'-t ' + str(nterms)+ ' ' + imout+'.model ' + skymodelf)
if FFT:
run('casapy --nogui -c '+SCRIPTPATH+'/ft_v2.py ' + msinputlist + ' ' + imout+'.model' \
+ ' ' + str(nterms) + ' '+ str(wplanes))
### CREATED MERGED PARMDB SCALARPHASE+AMPS ###
### INCLUDES SPLINE INTERPOLARION OF AMPS ###
if merge_parmdb:
logging.info('Merge parmdb')
if phasors:
dummyparset = SCRIPTPATH+'/scalarphase+amp.parset'
else:
if TEC:
dummyparset = SCRIPTPATH+'/scalarphase+ap+TEC.parset'
else:
dummyparset = SCRIPTPATH+'/scalarphase+ap.parset'
if TEC:
if clock:
dummyparmdb = 'instrument_template_TECclock'
else:
dummyparmdb = 'instrument_template_Gain_TEC_CSphase'
#if not os.path.isdir(dummyparmdb):
#runbbs([mslist[0]], skymodel,dummyparset, dummyparmdb, True, False)
# TO SPEED THINGS UP, hard coded for BOOTES - i.e. the above has already been run
for ms in mslist:
os.system('rm -rf ' + ms +'/' + dummyparmdb)
os.system('cp -r ' + dummyparmdb + ' ' + ms + '/instrument_template')
if smooth:
parmdb_a = 'instrument_amps1_smoothed' # last/best ampplitude(+phase) parmdb
else:
parmdb_a = 'instrument_amps1' # last/best ampplitude(+phase) parmdb
parmdb_p = 'instrument_phase1' # last/best CommonScalarPhase parmdb
parmdbout = 'instrument_merged'
#reset in case of instrument_template_TECclock
dummyparmdb = 'instrument_template'
for ms in mslist:
create_merged_parmdb(ms, ms+'/'+parmdb_a, ms+'/'+parmdb_p, ms+'/'+dummyparmdb,ms+'/'+parmdbout,cellsizetime_a,cellsizetime_p)
if __name__=="__main__":
# arguments are mslist, cluster, atrous_do, imsize, nterms, cellsizetime_a, cellsizetime_p, TECi, clocki, HRi, region, clusterdesc, dbserver, dbuser, dbname
mslist = sys.argv[1:-14]
cluster = str(sys.argv[-14])
atrous_do = str(sys.argv[-13])
imsize = numpy.int(sys.argv[-12])
nterms = numpy.int(sys.argv[-11]) # only 1 to 3 is supported !!
cellsizetime_a = numpy.int(sys.argv[-10])
cellsizetime_p = numpy.int(sys.argv[-9])
TECi = str(sys.argv[-8])
clocki = str(sys.argv[-7])
HRi = str(sys.argv[-6])
region = str(sys.argv[-5])
clusterdesc = sys.argv[-4]
dbserver=sys.argv[-3]
dbuser=sys.argv[-2]
dbname=sys.argv[-1]
SCRIPTPATH = os.path.dirname(os.path.abspath(__file__))
do_selfcal(mslist,cluster,atrous_do,imsize,nterms,cellsizetime_a,cellsizetime_p,TECi,clocki,HRi,region,clusterdesc,dbserver,dbuser,dbname,SCRIPTPATH)