-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeneticDalek.py
280 lines (196 loc) · 9.54 KB
/
geneticDalek.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#implementing genetic algorithm for fica:
import numpy as np
import shutil
from numpy import random
import datetime
import time
import os
import elauncher
import param
import initialize
import genFitness
import geneticDalekAlgo
import dalekDB
import inspect
import config
import model
import dalekExceptions
#Constants
import pprint
pp = pprint.PrettyPrinter(indent=4)
openGAParametersDefault = ['lum','vph']+config.GAConfDict['selElements']
openGAParameters = openGAParametersDefault
def breed(randomModelSet,popNum=None,select=geneticDalekAlgo.selectRoulette,
cross=geneticDalekAlgo.crossSingle):
if popNum==None: popNum=len(randomModelSet.grid)
fitness = randomModelSet['fitness']
w=randomModelSet['w']
k=0
loopNo=0
m=0
mutated=0
populationList=[]
if config.GAConfDict['scaleFitness']:
fitness=genFitness.fitnessScale(fitness,config.GAConfDict['Cmult'])
k=1
#breeding until enough new children
while k<popNum:
loopNo+=1
if loopNo>100*popNum: pdb.set_trace()
parentAID=select(fitness)
parentBID=select(fitness)
try:
child=cross(randomModelSet.grid[parentAID].param,randomModelSet.grid[parentBID].param)
except dalekExceptions.geneticException:
continue
if not geneticDalekAlgo.checkRatio(child):
#print "Child died due to ratio problems\n%s"%child.comp.data
m+=1
continue
child.targetDir='gen%d'%k
populationList.append(child)
k+=1
population=param.multiParam()
population.paramGrid=np.array(populationList)
print "%s children died because of abundance ratios"%m
return population
def evolve(conn, SNSpecID, GARunID=None, description=None, generations=20, populationSize=150,
breedFunc = breed, selectFunc=geneticDalekAlgo.selectRoulette,
crossFunc=geneticDalekAlgo.crossSingle,
randomParamFunc = geneticDalekAlgo.createRandomLogNormalValueW7):
#Run the GA
startTime = datetime.datetime.now()
#Initializing cursor
curs = conn.cursor()
#trying to remove existing break and debug switches
try:
os.remove('break_after_loop')
except:
pass
try:
os.remove('debug_after_loop')
except:
pass
#Initializing random seed
random.seed(config.GAConfDict['seed'])
#Initializing mode dependent constants:
generationGapNo=int(populationSize * config.GAConfDict['generationGapFraction'])
subPopulationNo=int(populationSize * config.GAConfDict['generationGapFraction']
* config.GAConfDict['subPopulationFraction'])
#Launching the gateways
gws=elauncher.gateways()
#getting origSpec and preparing it
rawOrigSpec = curs.execute('select SPECTRUM from SN_SPECTRA where ID=%d' % SNSpecID).fetchall()[0]
origSpec = initialize.preProcessOrigSpec(rawOrigSpec[0])
breedSource = dalekDB.makeZipPickle(inspect.getsource(breedFunc))
GAConfSource = dalekDB.makeZipPickle(config.GAConfDict)
crossSource = dalekDB.makeZipPickle(inspect.getsource(crossFunc))
selectSource = dalekDB.makeZipPickle(inspect.getsource(selectFunc))
fitSource = dalekDB.makeZipPickle(inspect.getsource(genFitness.fitFunc))
#Getting SNConfigDict
SNConfigDict = config.getSNConfigDict(conn)
SNConfigDict['t'] = config.getTimeFromExplosion(conn, SNSpecID, SNConfigDict)
#setting time
param.SNConfigDict = SNConfigDict
#Checking for continue or new
if GARunID!=None:
raise NotImplementedError('soon.....')
if GARunID == None: #or GA_CUR_GEN=0
#creating new GA_RUN entry and inserting the code of various functions
curs.execute('insert into GA_RUN(DESCRIPTION, SN_ID, START_TIME,'
'SN_SPECTRUM, GA_POP_SIZE, GA_GENERATION_SIZE, GA_CONF_DICT, GA_BREED_FUNC,'
'GA_CROSS_FUNC, GA_SELECT_FUNC, GA_FITNESS_FUNC)'
' VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)',
(description, SNSpecID, startTime,
origSpec, populationSize, generations, GAConfSource, breedSource,
crossSource, selectSource, fitSource))
GARunID = curs.lastrowid
curs.execute('insert into GA_GENERATION(GA_RUN_ID) VALUES(?)', (GARunID,))
generationID = curs.lastrowid
curGenerationSet = geneticDalekAlgo.createRandomParamSet(populationSize)
#Inserting the dica into the database, this dica will be used throughout the run
dicaID = dalekDB.insertDica(conn, curGenerationSet.paramGrid[0].dica)
firstGeneration = 0
# Checking availability on gateways
gws.checkAvailability()
pp.pprint(gws.availability)
#Launching
curGenerationModel = elauncher.cloudLaunch(curGenerationSet.paramGrid, gws.getAvailGateWays(), origSpec=origSpec)
#getting fitnesses from the model
fitness = curGenerationModel['fitness']
fitnessIDX = np.argsort(fitness)[::-1]
keepChildren = param.multiParam()
keepChildren.grid = np.array([])
keepModelIDs = np.array([])
keepFitness = np.array([])
for i in range(firstGeneration,generations):
#getting current time
curTime=time.time()
#saving model to db
modelIDs = curGenerationModel.toDB(conn, dicaID=dicaID, storeLList=False, storeWParam=False)
#main link between models and the GA for the keeping
dalekDB.insertGAIndividual(conn, generationID, keepModelIDs, keepFitness)
#main link between models and the GA
dalekDB.insertGAIndividual(conn, generationID, modelIDs, fitness)
curs.execute('update GA_RUN set GA_CUR_GEN=? where ID=?', (generationID, GARunID))
#getting new generation
curs.execute('insert into GA_GENERATION(GA_RUN_ID) VALUES(?)', (GARunID,))
generationID = curs.lastrowid
#uniting old keepChildren and current generation model
curGenerationModel.grid=np.concatenate((keepChildren.grid,curGenerationModel.grid))
curGenerationModel._initSpecs()
modelIDs = np.concatenate((keepModelIDs, modelIDs))
#getting fitnesses from the model
fitness = curGenerationModel['fitness']
fitnessIDX = np.argsort(fitness)[::-1]
#Checking for break conditions
if os.path.exists('break_after_loop'): break
if os.path.exists('debug_after_loop'):
try:
os.remove('debug_after_loop')
except:
pass
pdb.set_trace()
#start selective breeding
#First the children that are kept for the subpopulation are put into a seperate variable
if config.GAConfDict['mode'] == 'subpopulation':
if populationSize==subPopulationNo:
keepChildren=param.multiParam()
keepChildren.grid=np.array([])
else:
keepChildren = model.modelGrid(paramList=curGenerationModel.
grid[fitnessIDX[:(populationSize-subPopulationNo)]],
origSpec=origSpec)
keepModelIDs = modelIDs[fitnessIDX[:(populationSize - subPopulationNo)]]
keepFitness = fitness[fitnessIDX[:(populationSize - subPopulationNo)]]
keepChildren._initSpecs()
elif config.GAConfDict['mode'] == 'elitism':
keepChildren = model.modelGrid(paramList=curGenerationModel.
grid[fitnessIDX[:int(populationSize * config.GAConfDict['elitism'])]],
origSpec=origSpec)
keepModelIDs = modelIDs[fitnessIDX[:(populationSize * config.GAConfDict['elitism'])]]
keepFitness = fitness[fitnessIDX[:(populationSize * config.GAConfDict['elitism'])]]
keepChildren._initSpecs()
#Now we get the population that is used for breeding and submit it to the breed function
breedPopulation=model.modelGrid(paramList=curGenerationModel.
grid[fitnessIDX[:generationGapNo]],
origSpec=origSpec)
if config.GAConfDict['mode'] == 'subpopulation':
curGenerationSet=breed(breedPopulation,
popNum=subPopulationNo, select=selectFunc, cross=crossFunc)
elif config.GAConfDict['mode'] == 'elitism':
curGenerationSet=breed(breedPopulation,
popNum=int(populationSize*(1-config.GAConfDict['elitism'])), select=selectFunc, cross=crossFunc)
del curGenerationModel
#Time is kept
ficaTime=time.time()
#Network check for available nodes
gws.checkAvailability()
pp.pprint(gws.availability)
#Calculating the new generation with elauncher
curGenerationModel = elauncher.cloudLaunch(curGenerationSet.paramGrid, gws.getAvailGateWays(), origSpec=origSpec)
conn.commit()
#Printing time statements
print "Took %.3f for the fica runs" % (time.time()-ficaTime)
print "Took %.3f seconds for last loop" % (time.time()-curTime)
curs.execute('update GA_RUN set END_TIME=? where ID=?', (datetime.datetime.now(), GARunID))