-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenFitness.py~
59 lines (51 loc) · 1.71 KB
/
genFitness.py~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import numpy as np
uvWeight=0.5
irWeight=0.3
def fitInvSSE(model):
return 1/np.sum(model.subSpec.y**2)
def fitInvSSEW(model):
fitness=1/np.sum(model.subSpec[:6500.].y**2)
w=model['w']
wFactor=np.exp(-(abs(w-0.5)**5)/0.00005)
fitness*=wFactor
return fitness
def fitInvSSEW2(model):
uvRange=4000-model.subSpec.x.min()
opticalRange=6500-4000
irRange=model.subSpec.x.max()-6500
uv=np.sum(model.subSpec[:4000.].y**2)
optical=np.sum(model.subSpec[4000.:6300.].y**2)
ir=np.sum(model.subSpec[6300.:].y**2)
w=model['w']
wFactor=np.exp(-(abs(w-0.5)**5)/0.00005)
fitness=(1/(1*optical))
return fitness
def fitInvSSEW3(model):
w=model['w']
wFactor=wFilter(w)
stretch=30
sFilter=specFilter(model.subSpec.x,6300,4000,uvWeight,irWeight,stretch=30)
squareSpec=model.subSpec.y**2
sFitness=1/np.sum(squareSpec*sFilter)
return sFitness*w*wFactor
def fitInvSSEW4(model):
w=model['w']
wFactor=wFilter(w)
stretch=30
sFilter=specFilter(model.subSpec.x,6300,4000,uvWeight,irWeight,stretch=30)
squareSpec=model.subSpec.y**2
sFitness=1/np.sum(squareSpec*sFilter)
return sFitness*w*wFactor
def wFilter(w):
stretch=0.01
upLimit=0.7
lowLimit=0.4
filter=(1/(np.exp((w-upLimit)/stretch)+1))*(1/(np.exp((-w+lowLimit)/stretch)+1))
return filter
def diracFermiDown(x,loc,stretch,before,after):
return ((before-after)/(np.exp((x-loc)/stretch)+1))+after
def diracFermiUp(x,loc,stretch,before,after):
return ((before-after)/(np.exp((-x+loc)/stretch)+1))+after
def specFilter(x,loc1,loc2,amp1,amp2,stretch):
return diracFermiDown(x,loc1,stretch,1,amp1)*diracFermiUp(x,loc2,stretch,1,amp2)
fitFunc=fitInvSSEW3