forked from siliconflow/BizyAir
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnodes_controlnet_union_sdxl.py
172 lines (152 loc) · 5.71 KB
/
nodes_controlnet_union_sdxl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
"""
huggingface: https://huggingface.co/xinsir/controlnet-union-sdxl-1.0
github: https://github.com/xinsir6/ControlNetPlus/tree/main
"""
import json
import os
import numpy as np
import requests
from bizyair.common.env_var import BIZYAIR_SERVER_ADDRESS
from bizyair.image_utils import decode_comfy_image, encode_comfy_image
from .utils import get_api_key
class StableDiffusionXLControlNetUnionPipeline:
API_URL = f"{BIZYAIR_SERVER_ADDRESS}/supernode/diffusers-v1-stablediffusionxlcontrolnetunionpipeline"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"seed": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFFFFFFFFFFFF}),
"num_inference_steps": ("INT", {"default": 20, "min": 1, "max": 50}),
"num_images_per_prompt": ("INT", {"default": 1, "min": 1, "max": 4}),
"guidance_scale": (
"FLOAT",
{
"default": 5.0,
"min": 0.0,
"max": 100.0,
"step": 0.1,
"round": 0.01,
},
),
},
"optional": {
"openpose_image": ("IMAGE",),
"depth_image": ("IMAGE",),
"hed_pidi_scribble_ted_image": ("IMAGE",),
"canny_lineart_anime_lineart_mlsd_image": ("IMAGE",),
"normal_image": ("IMAGE",),
"segment_image": ("IMAGE",),
"prompt": (
"STRING",
{
"default": "a car",
"multiline": True,
"dynamicPrompts": True,
},
),
"negative_prompt": (
"STRING",
{
"default": "watermark, text",
"multiline": True,
"dynamicPrompts": True,
},
),
"control_guidance_start": (
"FLOAT",
{
"default": 0,
"min": 0.0,
"max": 1,
"step": 0.01,
},
),
"control_guidance_end": (
"FLOAT",
{
"default": 1.0,
"min": 0.0,
"max": 1,
"step": 0.01,
},
),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "process"
CATEGORY = "☁️BizyAir/ControlNet"
@staticmethod
def get_headers():
return {
"accept": "application/json",
"content-type": "application/json",
"authorization": f"Bearer {get_api_key()}",
}
def process(
self,
openpose_image=None,
depth_image=None,
hed_pidi_scribble_ted_image=None,
canny_lineart_anime_lineart_mlsd_image=None,
normal_image=None,
segment_image=None,
**kwargs,
):
controlnet_img = {
0: openpose_image,
1: depth_image,
2: hed_pidi_scribble_ted_image,
3: canny_lineart_anime_lineart_mlsd_image,
4: normal_image,
5: segment_image,
}
for k, v in controlnet_img.items():
if v is not None:
# need to resize the image resolution to 1024 * 1024 or same bucket resolution to get the best performance
# https://github.com/xinsir6/ControlNetPlus/blob/ba6c35b62e9df4c8f3b6429c4844ecc92685c8ec/controlnet_union_test_depth.py#L54-L56
height, width = v.shape[1:3]
ratio = np.sqrt(1024.0 * 1024.0 / (width * height))
new_width, new_height = int(width * ratio), int(height * ratio)
controlnet_img[k] = encode_comfy_image(v, old_version=True)
if new_width > 1536 or new_height > 1536:
error_message = (
f"Error: Adjusted image dimensions exceed the limit. "
f"Height: {new_height}, Width: {new_width}. "
f"Please resize the original image with dimensions "
f"Height: {height}, Width: {width} to ensure "
f"Adjusted image dimensions are within 1536 pixels. "
f"Recommended dimensions: Height: {1024}, Width: {1024}."
)
raise RuntimeError(error_message)
print(
f"Utilizing a height of {new_height} and width of {new_width} for processing."
)
payload = {
"width": new_width,
"height": new_height,
"controlnet_img": controlnet_img,
}
payload.update(**kwargs)
response = requests.post(
self.API_URL,
json=payload,
headers=self.get_headers(),
)
result = response.json()
if response.status_code != 200:
raise RuntimeError(f"Failed to create task: {result['error']}")
if "result" in result: # cloud
msg = json.loads(result["result"])
if "error" in msg:
raise RuntimeError(f"{msg['error']}")
img_data = msg["data"]["payload"]
else: # local
img_data = result["data"]["payload"]
output = decode_comfy_image(img_data, old_version=True)
return (output,)
NODE_CLASS_MAPPINGS = {
"StableDiffusionXLControlNetUnionPipeline": StableDiffusionXLControlNetUnionPipeline,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"StableDiffusionXLControlNetUnionPipeline": "☁️BizyAir Controlnet Union SDXL 1.0",
}