-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_cleanup.R
155 lines (121 loc) · 5.75 KB
/
data_cleanup.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
library(data.table)
library(dplyr)
library(data.tree)
#Functions ----
converttotree <- function(x){
#x[is.na(x)] <- ""
x <-mutate(x, key = "trash") %>%
#mutate(sum = as.numeric(sum)) %>%
dplyr::relocate(key) %>%
#dplyr::group_by(across(c(-sum))) %>%
#dplyr::summarise(sum = sum(sum)) %>%
unite(pathString, sep = "||", na.rm = T) ##Seems like we may be losing some of the sums here, would expect original values to be equal to the summed.
y <- FromDataFrameTable(x, pathDelimiter = "||")
ToDataFrameNetwork(y)
}
removeslash <- function(x){
gsub("/", " OR ", x)
}
#Find valid users ----
data <- fread("Litterati-Partners.csv")
data_clean <- data %>%
mutate(timestamp = as.POSIXct(gsub(" GMT", "", Date), format = "%d/%m/%Y %H:%M:%OS")) %>%
mutate(lat = as.numeric(gsub("/.{1,}", "", `Location (Lat / Long)`))) %>%
mutate(lon = as.numeric(gsub(".{1,}/", "", `Location (Lat / Long)`))) %>%
mutate(week = strftime(timestamp, format = "%W")) %>%
mutate(day = strftime(timestamp, format = "%D"))
## >= 1 survey per week
data_clean_week <- data_clean %>%
distinct(Username, week) %>%
group_by(Username) %>%
summarise(count = n()) %>%
filter(count > 3) %>%
select(-count) %>%
inner_join(data_clean)
## Reported Cleaned Up Data
data_reconciled <- fread("StudyAreas/User_Cleaned_Data/Total-Merge-Data-reconciled.csv")
brands <- fread("StudyAreas/User_Cleaned_Data/TrashTaxonomy/Brand_Manufacturer_Relation.csv")
site_data <- fread("StudyAreas/Demographic_Site_Data/Demographic_Data.csv")
data_reconciled_cleaned <- data_reconciled %>%
left_join(brands %>% dplyr::select(-Brand), by = "ID") %>%
mutate_all(na_if, "") %>%
mutate_all(na_if, " ") %>%
filter(!id %in% c(data_reconciled %>%
filter(Name == "Hannah Hapich" & Day %in% c("10/24/2018", "10/25/2018")) %>%
pull(id))) %>%
filter(!id %in% c(data_reconciled %>%
filter(Name == "Win Cowger" & Day %in% c("11/27/2018")) %>%
pull(id))) %>%
filter(!id %in% c(data_reconciled %>%
filter(Name == "Hina Nogi" & Day %in% c("10/24/2019")) %>%
pull(id))) %>%
mutate(Manufacturer = ifelse(is.na(Manufacturer), "other", Manufacturer)) %>%
left_join(site_data) %>%
mutate(Name = case_when(
Name == "Hannah Hapich" ~ "Site 1",
Name == "Hina Nogi" ~ "Site 2",
Name == "Jacqueline Santiago" ~ "Site 3",
Name == "LokTrevor" ~ "Site 4",
Name == "Melissa" ~ "Site 5",
Name == "Stanley" ~ "Site 6",
Name == "Win Cowger" & Day %in% c("10/1/2018", "10/3/2018", "10/6/2018", "10/8/2018", "10/11/2018", "10/12/2018", "9/16/2018", "9/18/2018", "9/21/2018", "9/25/2018", "9/26/2018", "11/27/2018", "9/28/2018") ~ "Site 7A",
Name == "Win Cowger" & Day %in% c( "4/2/2020", "4/5/2020", "3/23/2020", "3/26/2020", "3/30/2020", "4/3/2020") ~ "Site 7B",
)) %>%
mutate(Item_TT = cleantext(Item_TT)) %>%
mutate(Item_TT = case_when(
Item_TT == "bag(ziplock,produce,other)" ~ "bag(zip-lock,produce,other)",
Item_TT == "bottlecaps,lids,&pulltabs" ~ "bottlecaps,lids&pulltabs",
Item_TT == "cigarettesorcigartips" ~ "cigarettes/cigartips",
Item_TT == "film(thinkorflexiblee.g.strawwrapper)" ~ "film(thin/flexiblee.g.strawwrapper)",
Item_TT == "industrialpackagingorcratesorsheeting" ~ "industrialpackaging/crates/sheeting",
Item_TT == "industrialpackagingorcratesorsheeting" ~ "industrialpackaging/crates/sheeting",
Item_TT == "lumberorbuildingmaterial" ~ "lumber/buildingmaterial",
Item_TT == "paperornapkinsortissues" ~ "paper/napkins/tissues",
Item_TT == "pensorpencils" ~ "pens/pencils",
Item_TT == "popsicklestick" ~ "popsiclestick",
Item_TT == "strappingbandsorzip-ties" ~ "strappingbands/zip-ties",
Item_TT == "tubecontainer" ~ "containers/tubes",
Item_TT == "wrapper" ~ "wrappers",
TRUE ~ Item_TT
)) %>%
mutate(Material_TT = case_when(
Material_TT == "hard plastic" ~ "hard plastics",
TRUE ~ Material_TT
))
fwrite(data_reconciled_cleaned, "StudyAreas/User_Cleaned_Data/reconciled_cleaned.csv")
data_site_weekend <- data_reconciled_cleaned %>%
distinct(Name, Day, `Street Sweeping Schedule`)
fwrite(data_site_weekend, "StudyAreas/User_Cleaned_Data/weekend_sweep.csv")
data_reconciled %>%
filter(Name == "Win Cowger") %>%
pull(Day) %>%
unique()
data_reconciled_cleaned %>%
pull(Name) %>%
unique()
#Alias Cleanup
MaterialsAlias <- read.csv("Taxonomy/Website/Materials_Alias.csv") %>%
mutate_all(removeslash)
fwrite(MaterialsAlias, "Taxonomy/Website/Materials_Alias_V2.csv")
ItemsAlias <- read.csv("Taxonomy/Website/Items_Alias.csv")
SameItemsAlias <- read.csv("Taxonomy/Website/Items_Alias.csv") %>%
mutate(is_same = Item == Alias) %>%
filter(is_same) %>%
select(Item)
AddItemsAlias <- read.csv("Taxonomy/Website/Items_Alias.csv") %>%
select(Item) %>%
distinct() %>%
anti_join(SameItemsAlias) %>%
mutate(Alias = Item)
ItemsAlias_V2 <- bind_rows(ItemsAlias, AddItemsAlias) %>%
mutate_all(removeslash)
fwrite(ItemsAlias_V2, "Taxonomy/Website/Items_Alias_V2.csv")
#Hierarchy reform to tree merge easy
ItemsHierarchy <- read.csv("Taxonomy/Website/Items_Hierarchy.csv")
ItemsHierarchy_new <- converttotree(ItemsHierarchy)
fwrite(ItemsHierarchy_new, "Taxonomy/Website/Items_Hierarchy_V2.csv")
#Test items not matched
MaterialsHierarchy <- read.csv("Taxonomy/Website/Materials_Hierarchy.csv") %>%
mutate_all(removeslash)
MaterialsHierarchy_new <- converttotree(MaterialsHierarchy)
fwrite(MaterialsHierarchy_new, "Taxonomy/Website/Materials_Hierarchy_V2.csv")