-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathevaluate.py
94 lines (79 loc) · 2.46 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import argparse
import os
import PIL.Image as Image
import torch
from tqdm import tqdm
from model_factory import ModelFactory
def opts() -> argparse.ArgumentParser:
"""Option Handling Function."""
parser = argparse.ArgumentParser(description="RecVis A3 evaluation script")
parser.add_argument(
"--data",
type=str,
default="data_sketches",
metavar="D",
help="folder where data is located. test_images/ need to be found in the folder",
)
parser.add_argument(
"--model",
type=str,
metavar="M",
help="the model file to be evaluated. Usually it is of the form model_X.pth",
)
parser.add_argument(
"--model_name",
type=str,
default="basic_cnn",
metavar="MOD",
help="Name of the model for model and transform instantiation.",
)
parser.add_argument(
"--outfile",
type=str,
default="experiment/kaggle.csv",
metavar="D",
help="name of the output csv file",
)
args = parser.parse_args()
return args
def pil_loader(path):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, "rb") as f:
with Image.open(f) as img:
return img.convert("RGB")
def main() -> None:
"""Main Function."""
# options
args = opts()
test_dir = args.data + "/test_images/mistery_category"
# cuda
use_cuda = torch.cuda.is_available()
# load model and transform
state_dict = torch.load(args.model)
model, data_transforms = ModelFactory(args.model_name).get_all()
model.load_state_dict(state_dict)
model.eval()
if use_cuda:
print("Using GPU")
model.cuda()
else:
print("Using CPU")
output_file = open(args.outfile, "w")
output_file.write("Id,Category\n")
for f in tqdm(os.listdir(test_dir)):
if "jpeg" in f:
data = data_transforms(pil_loader(test_dir + "/" + f))
data = data.view(1, data.size(0), data.size(1), data.size(2))
if use_cuda:
data = data.cuda()
output = model(data)
pred = output.data.max(1, keepdim=True)[1]
output_file.write("%s,%d\n" % (f[:-5], pred))
output_file.close()
print(
"Succesfully wrote "
+ args.outfile
+ ", you can upload this file to the kaggle competition website"
)
if __name__ == "__main__":
main()