-
Notifications
You must be signed in to change notification settings - Fork 201
/
rerender.py
469 lines (406 loc) · 17.6 KB
/
rerender.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
import argparse
import os
import random
import cv2
import einops
import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms as T
from blendmodes.blend import BlendType, blendLayers
from PIL import Image
from pytorch_lightning import seed_everything
from safetensors.torch import load_file
from skimage import exposure
import src.import_util # noqa: F401
from deps.ControlNet.annotator.canny import CannyDetector
from deps.ControlNet.annotator.hed import HEDdetector
from deps.ControlNet.annotator.util import HWC3
from deps.ControlNet.cldm.cldm import ControlLDM
from deps.ControlNet.cldm.model import create_model, load_state_dict
from deps.gmflow.gmflow.gmflow import GMFlow
from flow.flow_utils import get_warped_and_mask
from src.config import RerenderConfig
from src.controller import AttentionControl
from src.ddim_v_hacked import DDIMVSampler
from src.freeu import freeu_forward
from src.img_util import find_flat_region, numpy2tensor
from src.video_util import frame_to_video, get_fps, prepare_frames
blur = T.GaussianBlur(kernel_size=(9, 9), sigma=(18, 18))
totensor = T.PILToTensor()
def setup_color_correction(image):
correction_target = cv2.cvtColor(np.asarray(image.copy()),
cv2.COLOR_RGB2LAB)
return correction_target
def apply_color_correction(correction, original_image):
image = Image.fromarray(
cv2.cvtColor(
exposure.match_histograms(cv2.cvtColor(np.asarray(original_image),
cv2.COLOR_RGB2LAB),
correction,
channel_axis=2),
cv2.COLOR_LAB2RGB).astype('uint8'))
image = blendLayers(image, original_image, BlendType.LUMINOSITY)
return image
def rerender(cfg: RerenderConfig, first_img_only: bool, key_video_path: str):
# Preprocess input
prepare_frames(cfg.input_path, cfg.input_dir, cfg.image_resolution, cfg.crop, cfg.use_limit_device_resolution)
# Load models
if cfg.control_type == 'HED':
detector = HEDdetector()
elif cfg.control_type == 'canny':
canny_detector = CannyDetector()
low_threshold = cfg.canny_low
high_threshold = cfg.canny_high
def apply_canny(x):
return canny_detector(x, low_threshold, high_threshold)
detector = apply_canny
model: ControlLDM = create_model(
'./deps/ControlNet/models/cldm_v15.yaml').cpu()
if cfg.control_type == 'HED':
model.load_state_dict(
load_state_dict('./models/control_sd15_hed.pth', location='cuda'))
elif cfg.control_type == 'canny':
model.load_state_dict(
load_state_dict('./models/control_sd15_canny.pth',
location='cuda'))
model = model.cuda()
model.control_scales = [cfg.control_strength] * 13
if cfg.sd_model is not None:
model_ext = os.path.splitext(cfg.sd_model)[1]
if model_ext == '.safetensors':
model.load_state_dict(load_file(cfg.sd_model), strict=False)
elif model_ext == '.ckpt' or model_ext == '.pth':
model.load_state_dict(torch.load(cfg.sd_model)['state_dict'],
strict=False)
try:
model.first_stage_model.load_state_dict(torch.load(
'./models/vae-ft-mse-840000-ema-pruned.ckpt')['state_dict'],
strict=False)
except Exception:
print('Warning: We suggest you download the fine-tuned VAE',
'otherwise the generation quality will be degraded')
model.model.diffusion_model.forward = \
freeu_forward(model.model.diffusion_model, *cfg.freeu_args)
ddim_v_sampler = DDIMVSampler(model)
flow_model = GMFlow(
feature_channels=128,
num_scales=1,
upsample_factor=8,
num_head=1,
attention_type='swin',
ffn_dim_expansion=4,
num_transformer_layers=6,
).to('cuda')
checkpoint = torch.load('models/gmflow_sintel-0c07dcb3.pth',
map_location=lambda storage, loc: storage)
weights = checkpoint['model'] if 'model' in checkpoint else checkpoint
flow_model.load_state_dict(weights, strict=False)
flow_model.eval()
num_samples = 1
ddim_steps = 20
scale = 7.5
seed = cfg.seed
if seed == -1:
seed = random.randint(0, 65535)
eta = 0.0
prompt = cfg.prompt
a_prompt = cfg.a_prompt
n_prompt = cfg.n_prompt
prompt = prompt + ', ' + a_prompt
style_update_freq = cfg.style_update_freq
pixelfusion = True
color_preserve = cfg.color_preserve
x0_strength = 1 - cfg.x0_strength
mask_period = cfg.mask_period
firstx0 = True
controller = AttentionControl(cfg.inner_strength, cfg.mask_period,
cfg.cross_period, cfg.ada_period,
cfg.warp_period, cfg.loose_cfattn)
imgs = sorted(os.listdir(cfg.input_dir))
imgs = [os.path.join(cfg.input_dir, img) for img in imgs]
if cfg.frame_count >= 0:
imgs = imgs[:cfg.frame_count]
with torch.no_grad():
frame = cv2.imread(imgs[0])
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = HWC3(frame)
H, W, C = img.shape
img_ = numpy2tensor(img)
# if color_preserve:
# img_ = numpy2tensor(img)
# else:
# img_ = apply_color_correction(color_corrections,
# Image.fromarray(img))
# img_ = totensor(img_).unsqueeze(0)[:, :3] / 127.5 - 1
encoder_posterior = model.encode_first_stage(img_.cuda())
x0 = model.get_first_stage_encoding(encoder_posterior).detach()
detected_map = detector(img)
detected_map = HWC3(detected_map)
# For visualization
detected_img = 255 - detected_map
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
cond = {
'c_concat': [control],
'c_crossattn':
[model.get_learned_conditioning([prompt] * num_samples)]
}
un_cond = {
'c_concat': [control],
'c_crossattn':
[model.get_learned_conditioning([n_prompt] * num_samples)]
}
shape = (4, H // 8, W // 8)
controller.set_task('initfirst')
seed_everything(seed)
samples, _ = ddim_v_sampler.sample(ddim_steps,
num_samples,
shape,
cond,
verbose=False,
eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond,
controller=controller,
x0=x0,
strength=x0_strength)
x_samples = model.decode_first_stage(samples)
pre_result = x_samples
pre_img = img
first_result = pre_result
first_img = pre_img
x_samples = (
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
color_corrections = setup_color_correction(Image.fromarray(x_samples[0]))
Image.fromarray(x_samples[0]).save(os.path.join(cfg.first_dir,
'first.jpg'))
cv2.imwrite(os.path.join(cfg.first_dir, 'first_edge.jpg'), detected_img)
if first_img_only:
exit(0)
for i in range(0, min(len(imgs), cfg.frame_count) - 1, cfg.interval):
cid = i + 1
print(cid)
if cid <= (len(imgs) - 1):
frame = cv2.imread(imgs[cid])
else:
frame = cv2.imread(imgs[len(imgs) - 1])
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = HWC3(frame)
if color_preserve:
img_ = numpy2tensor(img)
else:
img_ = apply_color_correction(color_corrections,
Image.fromarray(img))
img_ = totensor(img_).unsqueeze(0)[:, :3] / 127.5 - 1
encoder_posterior = model.encode_first_stage(img_.cuda())
x0 = model.get_first_stage_encoding(encoder_posterior).detach()
detected_map = detector(img)
detected_map = HWC3(detected_map)
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
cond['c_concat'] = [control]
un_cond['c_concat'] = [control]
image1 = torch.from_numpy(pre_img).permute(2, 0, 1).float()
image2 = torch.from_numpy(img).permute(2, 0, 1).float()
warped_pre, bwd_occ_pre, bwd_flow_pre = get_warped_and_mask(
flow_model, image1, image2, pre_result, False)
blend_mask_pre = blur(
F.max_pool2d(bwd_occ_pre, kernel_size=9, stride=1, padding=4))
blend_mask_pre = torch.clamp(blend_mask_pre + bwd_occ_pre, 0, 1)
image1 = torch.from_numpy(first_img).permute(2, 0, 1).float()
warped_0, bwd_occ_0, bwd_flow_0 = get_warped_and_mask(
flow_model, image1, image2, first_result, False)
blend_mask_0 = blur(
F.max_pool2d(bwd_occ_0, kernel_size=9, stride=1, padding=4))
blend_mask_0 = torch.clamp(blend_mask_0 + bwd_occ_0, 0, 1)
if firstx0:
mask = 1 - F.max_pool2d(blend_mask_0, kernel_size=8)
controller.set_warp(
F.interpolate(bwd_flow_0 / 8.0,
scale_factor=1. / 8,
mode='bilinear'), mask)
else:
mask = 1 - F.max_pool2d(blend_mask_pre, kernel_size=8)
controller.set_warp(
F.interpolate(bwd_flow_pre / 8.0,
scale_factor=1. / 8,
mode='bilinear'), mask)
controller.set_task('keepx0, keepstyle')
seed_everything(seed)
samples, intermediates = ddim_v_sampler.sample(
ddim_steps,
num_samples,
shape,
cond,
verbose=False,
eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond,
controller=controller,
x0=x0,
strength=x0_strength)
direct_result = model.decode_first_stage(samples)
if not pixelfusion:
pre_result = direct_result
pre_img = img
viz = (
einops.rearrange(direct_result, 'b c h w -> b h w c') * 127.5 +
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
else:
blend_results = (1 - blend_mask_pre
) * warped_pre + blend_mask_pre * direct_result
blend_results = (
1 - blend_mask_0) * warped_0 + blend_mask_0 * blend_results
bwd_occ = 1 - torch.clamp(1 - bwd_occ_pre + 1 - bwd_occ_0, 0, 1)
blend_mask = blur(
F.max_pool2d(bwd_occ, kernel_size=9, stride=1, padding=4))
blend_mask = 1 - torch.clamp(blend_mask + bwd_occ, 0, 1)
encoder_posterior = model.encode_first_stage(blend_results)
xtrg = model.get_first_stage_encoding(
encoder_posterior).detach() # * mask
blend_results_rec = model.decode_first_stage(xtrg)
encoder_posterior = model.encode_first_stage(blend_results_rec)
xtrg_rec = model.get_first_stage_encoding(
encoder_posterior).detach()
xtrg_ = (xtrg + 1 * (xtrg - xtrg_rec)) # * mask
blend_results_rec_new = model.decode_first_stage(xtrg_)
tmp = (abs(blend_results_rec_new - blend_results).mean(
dim=1, keepdims=True) > 0.25).float()
mask_x = F.max_pool2d((F.interpolate(
tmp, scale_factor=1 / 8., mode='bilinear') > 0).float(),
kernel_size=3,
stride=1,
padding=1)
mask = (1 - F.max_pool2d(1 - blend_mask, kernel_size=8)
) # * (1-mask_x)
if cfg.smooth_boundary:
noise_rescale = find_flat_region(mask)
else:
noise_rescale = torch.ones_like(mask)
masks = []
for j in range(ddim_steps):
if j <= ddim_steps * mask_period[
0] or j >= ddim_steps * mask_period[1]:
masks += [None]
else:
masks += [mask * cfg.mask_strength]
# mask 3
# xtrg = ((1-mask_x) *
# (xtrg + xtrg - xtrg_rec) + mask_x * samples) * mask
# mask 2
# xtrg = (xtrg + 1 * (xtrg - xtrg_rec)) * mask
xtrg = (xtrg + (1 - mask_x) * (xtrg - xtrg_rec)) * mask # mask 1
tasks = 'keepstyle, keepx0'
if not firstx0:
tasks += ', updatex0'
if i % style_update_freq == 0:
tasks += ', updatestyle'
controller.set_task(tasks, 1.0)
seed_everything(seed)
samples, _ = ddim_v_sampler.sample(
ddim_steps,
num_samples,
shape,
cond,
verbose=False,
eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond,
controller=controller,
x0=x0,
strength=x0_strength,
xtrg=xtrg,
mask=masks,
noise_rescale=noise_rescale)
x_samples = model.decode_first_stage(samples)
pre_result = x_samples
pre_img = img
viz = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
Image.fromarray(viz[0]).save(
os.path.join(cfg.key_dir, f'{cid:04d}.png'))
if key_video_path is not None:
fps = get_fps(cfg.input_path)
fps //= cfg.interval
frame_to_video(key_video_path, cfg.key_dir, fps, False)
def postprocess(cfg: RerenderConfig, ne: bool, max_process: int, tmp: bool,
ps: bool):
video_base_dir = cfg.work_dir
o_video = cfg.output_path
fps = get_fps(cfg.input_path)
end_frame = cfg.frame_count - 1
interval = cfg.interval
key_dir = os.path.split(cfg.key_dir)[-1]
use_e = '-ne' if ne else ''
use_tmp = '-tmp' if tmp else ''
use_ps = '-ps' if ps else ''
o_video_cmd = f'--output {o_video}'
cmd = (
f'python video_blend.py {video_base_dir} --beg 1 --end {end_frame} '
f'--itv {interval} --key {key_dir} {use_e} {o_video_cmd} --fps {fps} '
f'--n_proc {max_process} {use_tmp} {use_ps}')
print(cmd)
os.system(cmd)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default=None)
parser.add_argument('--input',
type=str,
default=None,
help='The input path to video.')
parser.add_argument('--output', type=str, default=None)
parser.add_argument('--prompt', type=str, default=None)
parser.add_argument('--key_video_path', type=str, default=None)
parser.add_argument('-one',
action='store_true',
help='Run the first frame with ControlNet only')
parser.add_argument('-nr',
action='store_true',
help='Do not run rerender and do postprocessing only')
parser.add_argument('-nb',
action='store_true',
help='Do not run postprocessing and run rerender only')
parser.add_argument(
'-ne',
action='store_true',
help='Do not run ebsynth (use previous ebsynth temporary output)')
parser.add_argument('-nps',
action='store_true',
help='Do not run poisson gradient blending')
parser.add_argument('--n_proc',
type=int,
default=4,
help='The max process count')
parser.add_argument('--tmp',
action='store_true',
help='Keep ebsynth temporary output')
args = parser.parse_args()
cfg = RerenderConfig()
if args.cfg is not None:
cfg.create_from_path(args.cfg)
if args.input is not None:
print('Config has been loaded. --input is ignored.')
if args.output is not None:
print('Config has been loaded. --output is ignored.')
if args.prompt is not None:
print('Config has been loaded. --prompt is ignored.')
else:
if args.input is None:
print('Config not found. --input is required.')
exit(0)
if args.output is None:
print('Config not found. --output is required.')
exit(0)
if args.prompt is None:
print('Config not found. --prompt is required.')
exit(0)
cfg.create_from_parameters(args.input, args.output, args.prompt)
if not args.nr:
rerender(cfg, args.one, args.key_video_path)
torch.cuda.empty_cache()
if not args.nb:
postprocess(cfg, args.ne, args.n_proc, args.tmp, not args.nps)