-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathstlc_binary.v
455 lines (415 loc) · 11.2 KB
/
stlc_binary.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
From mm Require Import util stlc.
Set Implicit Arguments.
Module terminating.
Definition t (P : expr.t -> expr.t -> Prop) (e1 e2 : expr.t) :=
exists v1 v2,
step.star e1 v1 /\
step.star e2 v2 /\
value.t v1 /\
value.t v2 /\
P v1 v2
.
End terminating.
Fixpoint V ty e1 e2 :=
match ty with
| type.bool => (e1 = expr.tt /\ e2 = expr.tt) \/ (e1 = expr.ff /\ e2 = expr.ff)
| type.arrow ty1 ty2 =>
expr.wf 0 e1 /\
expr.wf 0 e2 /\
exists body1 body2,
e1 = expr.abs body1 /\
e2 = expr.abs body2 /\
forall v1 v2,
V ty1 v1 v2 ->
terminating.t (V ty2) (expr.subst [v1] body1) (expr.subst [v2] body2)
end.
Notation E ty :=
(terminating.t (V ty)).
Lemma V_value :
forall ty v1 v2,
V ty v1 v2 ->
value.t v1 /\ value.t v2.
Proof.
intros ty v1 v2 HV.
destruct ty; cbn [V] in HV.
- intuition; subst; constructor.
- destruct HV as [WF1 [WF2 [body1 [body2 [? [? _]]]]]].
intuition; subst; constructor.
Qed.
Lemma V_E :
forall ty v1 v2,
V ty v1 v2 ->
E ty v1 v2.
Proof.
intros.
exists v1, v2.
intuition.
- firstorder using V_value.
- firstorder using V_value.
Qed.
Lemma V_closed :
forall ty v1 v2 ,
V ty v1 v2 ->
expr.wf 0 v1 /\ expr.wf 0 v2.
Proof.
induction ty; simpl; intuition; subst; simpl; auto.
Qed.
Lemma V_list_closed :
forall G vs1 vs2,
Forall3 V G vs1 vs2 ->
Forall (expr.wf 0) vs1 /\ Forall (expr.wf 0) vs2.
Proof.
intros G vs1 vs2 F.
split; apply Forall_from_nth.
- intros n e1 NEe1.
destruct (Forall3_nth_error2 _ F NEe1) as [ty [e2 [NEty [NEe2 Ve2]]]].
firstorder using V_closed.
- intros n e2 NEe2.
destruct (Forall3_nth_error3 _ F NEe2) as [ty [e1 [NEty [NEe1 Ve1]]]].
firstorder using V_closed.
Qed.
Lemma E_step1 :
forall ty e1 e1' e2,
step.t e1 e1' ->
E ty e1' e2 ->
E ty e1 e2.
Proof.
intros ty e1 e1' e2 S HE.
revert ty e2 HE.
induction S; intros ty0 e0 [v1 [v2 [Star1 [Star2 [Val1 [Val2 V12]]]]]]; exists v1, v2; intuition.
all: eapply step.step_l; eauto.
Qed.
Lemma E_step2 :
forall ty e1 e2 e2',
step.t e2 e2' ->
E ty e1 e2' ->
E ty e1 e2.
Proof.
intros ty e1 e2 e2' S HE.
revert ty e1 HE.
induction S; intros ty0 e0 [v1 [v2 [Star1 [Star2 [Val1 [Val2 V12]]]]]]; exists v1, v2; intuition.
all: eapply step.step_l; eauto.
Qed.
Lemma E_step :
forall ty e1 e1' e2 e2',
step.t e1 e1' ->
step.t e2 e2' ->
E ty e1' e2' ->
E ty e1 e2.
Proof.
intros ty e1 e1' e2 e2' S1 S2 HE.
eapply E_step1; [|eapply E_step2]; eauto.
Qed.
Lemma E_star1 :
forall ty e1 e1' e2,
step.star e1 e1' ->
E ty e1' e2 ->
E ty e1 e2.
Proof.
intros ty e1 e1' e2 Star E12.
revert ty e2 E12.
now induction Star; eauto using E_step1.
Qed.
Lemma E_star2 :
forall ty e1 e2 e2',
step.star e2 e2' ->
E ty e1 e2' ->
E ty e1 e2.
Proof.
intros ty e1 e2 e2' Star E12.
revert ty e1 E12.
now induction Star; eauto using E_step2.
Qed.
Lemma E_star :
forall ty e1 e1' e2 e2',
step.star e1 e1' ->
step.star e2 e2' ->
E ty e1' e2' ->
E ty e1 e2.
Proof.
intros ty e1 e1' e2 e2' Star1 Star2 E12.
eapply E_star1; [|eapply E_star2]; eauto.
Qed.
Module has_sem_type.
Definition t G e1 e2 ty :=
expr.wf (length G) e1 /\
expr.wf (length G) e2 /\
forall vs1 vs2,
Forall3 V G vs1 vs2 ->
E ty (expr.subst vs1 e1) (expr.subst vs2 e2).
Lemma var :
forall G x ty,
nth_error G x = Some ty ->
t G (expr.var x) (expr.var x) ty.
Proof.
unfold t.
intros G x ty NE.
do_nth_error_Some.
split; [apply H; congruence|].
split; [apply H; congruence|].
intros vs1 vs2 F.
apply V_E.
destruct (Forall3_nth_error1 _ F NE) as [v1 [v2 [NE1 [NE2 V12]]]].
cbn.
now rewrite NE1, NE2.
Qed.
Lemma tt :
forall G,
t G expr.tt expr.tt type.bool.
Proof.
unfold t.
intros G.
split; [exact I|].
split; [exact I|].
intros vs1 vs2 F.
apply V_E.
cbn.
intuition.
Qed.
Lemma ff :
forall G,
t G expr.ff expr.ff type.bool.
Proof.
unfold t.
intros G.
split; [exact I|].
split; [exact I|].
intros vs1 vs2 F.
apply V_E.
cbn.
intuition.
Qed.
Lemma abs :
forall G e1 e2 ty1 ty2,
t (ty1 :: G) e1 e2 ty2 ->
t G (expr.abs e1) (expr.abs e2) (type.arrow ty1 ty2).
Proof.
unfold t.
intros G e1 e2 ty1 ty2 [WF1 [WF2 HT]].
split; [now auto|].
split; [now auto|].
intros vs1 vs2 F.
apply V_E.
cbn [V].
destruct (Forall3_length F) as [EG1 EG2].
cbn [length] in *.
split; [apply expr.wf_subst;
[now rewrite EG1 in WF1| now firstorder using V_list_closed]|].
split; [apply expr.wf_subst;
[now rewrite EG2 in WF2| now firstorder using V_list_closed]|].
exists (expr.subst (expr.descend 1 vs1) e1), (expr.subst (expr.descend 1 vs2) e2).
split; [now rewrite expr.descend_1|].
split; [now rewrite expr.descend_1|].
intros v1 v2 V12.
rewrite !expr.subst_cons;
firstorder using V_list_closed.
now rewrite EG2 in *.
now rewrite EG1 in *.
Qed.
Lemma app :
forall G e11 e12 e21 e22 ty1 ty2,
t G e11 e21 (type.arrow ty1 ty2) ->
t G e12 e22 ty1 ->
t G (expr.app e11 e12) (expr.app e21 e22) ty2.
Proof.
intros G e11 e12 e21 e22 ty1 ty2.
intros [WF11 [WF12 HT1]].
intros [WF21 [WF22 HT2]].
split; [now cbn; auto|].
split; [now cbn; auto|].
intros vs1 vs2 F.
cbn [expr.subst].
specialize (HT1 vs1 vs2 F).
specialize (HT2 vs1 vs2 F).
destruct HT1 as [v11 [v12 [Star11 [Star12 [Val11 [Val12 V1]]]]]].
destruct HT2 as [v21 [v22 [Star21 [Star22 [Val21 [Val22 V2]]]]]].
destruct V1 as [WF1 [WF2 [body1 [body2 [? [? H1]]]]]].
subst v11 v12.
eapply E_star; [| |now eauto].
eapply step.star_trans.
eapply step.star_app1. now eauto.
eapply step.star_trans.
now eapply step.star_app2; eauto.
eauto using step.step_l, step.beta.
eapply step.star_trans.
eapply step.star_app1. now eauto.
eapply step.star_trans.
now eapply step.star_app2; eauto.
eauto using step.step_l, step.beta.
Qed.
Lemma If :
forall G e11 e12 e21 e22 e31 e32 ty,
t G e11 e12 type.bool ->
t G e21 e22 ty ->
t G e31 e32 ty ->
t G (expr.If e11 e21 e31) (expr.If e12 e22 e32) ty.
Proof.
intros G e11 e12 e21 e22 e31 e32 ty.
intros [WF11 [WF12 HT1]].
intros [WF21 [WF22 HT2]].
intros [WF31 [WF32 HT3]].
split; [now cbn; auto|].
split; [now cbn; auto|].
intros vs1 vs2 F.
cbn [expr.subst].
specialize (HT1 vs1 vs2 F).
destruct HT1 as [v11 [v12 [Star11 [Star12 [Val11 [Val12 V1]]]]]].
eapply E_star; [apply step.star_If|apply step.star_If|]; eauto.
destruct V1 as [[? ?]|[? ?]]; subst;
(eapply E_step; [constructor|constructor|]); auto.
Qed.
End has_sem_type.
Theorem fundamental :
forall G e ty,
has_type.t G e ty ->
has_sem_type.t G e e ty.
Proof.
induction 1.
- now apply has_sem_type.var.
- apply has_sem_type.tt.
- apply has_sem_type.ff.
- apply has_type.wf in H.
apply has_sem_type.abs; auto.
- eapply has_sem_type.app; eauto.
- apply has_sem_type.If; auto.
Qed.
Print Assumptions fundamental.
Corollary fundamental_closed :
forall e ty,
has_type.t [] e ty ->
E ty e e.
Proof.
intros e ty HT.
apply fundamental with (vs1 := []) (vs2 := []) in HT; auto.
now rewrite !expr.subst_identity with (n := 0) in *.
Qed.
Lemma fundamental_value :
forall v ty,
has_type.t [] v ty ->
value.t v ->
V ty v v.
Proof.
intros v ty HT Val.
pose proof fundamental_closed HT as Ev.
destruct Ev as [v1 [v2 [Star1 [Star2 [Val1 [Val2 V12]]]]]].
apply step.star_value in Star1; auto.
apply step.star_value in Star2; auto.
subst.
auto.
Qed.
Corollary termination :
forall e ty,
has_type.t [] e ty ->
exists v, value.t v /\ step.star e v.
Proof.
intros e ty HT.
destruct (fundamental_closed HT) as [v1 [v2 [Star1 [Star2 [Val1 [Val2 V12]]]]]].
eauto.
Qed.
Module context_has_sem_type.
Definition t G' C1 C2 G ty ty' :=
forall e1 e2,
has_sem_type.t G e1 e2 ty ->
has_sem_type.t G' (context.plug C1 e1) (context.plug C2 e2) ty'.
Lemma hole :
forall G ty,
t G context.hole context.hole G ty ty.
Proof.
unfold t.
simpl.
auto.
Qed.
Lemma abs :
forall G' C1 C2 G ty ty1' ty2',
t (ty1' :: G') C1 C2 (ty1' :: G) ty ty2' ->
t G' (context.abs C1) (context.abs C2) (ty1' :: G) ty (type.arrow ty1' ty2').
Proof.
unfold t.
cbn [context.plug].
auto using has_sem_type.abs.
Qed.
Lemma app1 :
forall G' C1 C2 G ty ty1' ty2' e1 e2,
t G' C1 C2 G ty (type.arrow ty1' ty2') ->
has_sem_type.t G' e1 e2 ty1' ->
t G' (context.app1 C1 e1) (context.app1 C2 e2) G ty ty2'.
Proof.
unfold t.
cbn [context.plug].
eauto using has_sem_type.app.
Qed.
Lemma app2 :
forall G' C1 C2 G ty ty1' ty2' e1 e2,
has_sem_type.t G' e1 e2 (type.arrow ty1' ty2') ->
t G' C1 C2 G ty ty1' ->
t G' (context.app2 e1 C1) (context.app2 e2 C2) G ty ty2'.
Proof.
unfold t.
cbn [context.plug].
eauto using has_sem_type.app.
Qed.
Lemma If1 :
forall G' C1 C1' G ty ty' e2 e2' e3 e3',
t G' C1 C1' G ty type.bool ->
has_sem_type.t G' e2 e2' ty' ->
has_sem_type.t G' e3 e3' ty' ->
t G' (context.If1 C1 e2 e3) (context.If1 C1' e2' e3') G ty ty'.
Proof.
unfold t.
cbn [context.plug].
eauto using has_sem_type.If.
Qed.
Lemma If2 :
forall G' C2 C2' G ty ty' e1 e1' e3 e3',
has_sem_type.t G' e1 e1' type.bool ->
t G' C2 C2' G ty ty' ->
has_sem_type.t G' e3 e3' ty' ->
t G' (context.If2 e1 C2 e3) (context.If2 e1' C2' e3') G ty ty'.
Proof.
unfold t.
cbn [context.plug].
eauto using has_sem_type.If.
Qed.
Lemma If3 :
forall G' C3 C3' G ty ty' e1 e1' e2 e2',
has_sem_type.t G' e1 e1' type.bool ->
has_sem_type.t G' e2 e2' ty' ->
t G' C3 C3' G ty ty' ->
t G' (context.If3 e1 e2 C3) (context.If3 e1' e2' C3') G ty ty'.
Proof.
unfold t.
cbn [context.plug].
eauto using has_sem_type.If.
Qed.
End context_has_sem_type.
Lemma context_fundamental :
forall G' C G ty ty',
context_has_type.t G' C G ty ty' ->
context_has_sem_type.t G' C C G ty ty'.
Proof.
induction 1.
- apply context_has_sem_type.hole.
- apply context_has_sem_type.abs; auto.
- eapply context_has_sem_type.app1; eauto using fundamental.
- eapply context_has_sem_type.app2; eauto using fundamental.
- eapply context_has_sem_type.If1; eauto using fundamental.
- eapply context_has_sem_type.If2; eauto using fundamental.
- eapply context_has_sem_type.If3; eauto using fundamental.
Qed.
Lemma has_sem_type_context_equiv :
forall G e1 e2 ty,
has_sem_type.t G e1 e2 ty ->
context_equiv.t G e1 e2 ty.
Proof.
unfold context_equiv.t.
intros G e1 e2 ty HST.
intros C v1 v2 CHT Star1 Val1 Star2 Val2.
destruct (context_fundamental CHT HST) as [WF1 [WF2 E12]].
specialize (E12 [] [] (Forall3_nil _)).
destruct E12 as [v1' [v2' [Star1' [Star2' [Val1' [Val2' V12']]]]]].
rewrite expr.subst_identity with (n := 0) in *.
assert (v1 = v1') by eauto using step.star_det_value.
assert (v2 = v2') by eauto using step.star_det_value.
subst.
destruct V12' as [[??]|[??]]; subst; auto.
Qed.