-
Notifications
You must be signed in to change notification settings - Fork 3
/
mapproj.m
149 lines (131 loc) · 5.56 KB
/
mapproj.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
% mapproj() - Spherical projection and back projection functions
%
% Usage:
% >> [x, y] = mapproj(type, th, phi); % projection
% >> [th, phi] = mapproj(type, x, y); % back projection
% >> [x, y] = mapproj(type, th, phi, th0, phi1);
% >> [th, phi] = mapproj(type, x, y, th0, phi1);
%
% Inputs:
% type - char array type of projection. 'sph2stereographic',
% 'sph2orthographic', 'sph2gnomonic', 'sph2equidistant', or
% 'sph2equiareal' for projection. 'stereographic2sph',
% 'orthographic2sph', 'gnomonic2sph', 'equidistant2sph', or
% 'equiareal2sph' for back projection.
% th - scalar or vector longitude in radians
% phi - scalar or vector latitude in radians
% x - scalar or vector cartesian x
% y - scalar or vector cartesian y
%
% Optional inputs:
% th0 - scalar central longitude {default pi}
% phi1 - scalar central latitude {default pi / 2}
%
% Outputs:
% x - scalar or vector projected cartesian x
% y - scalar or vector projected cartesian y
% th - scalar or vector back projected longitude in radians
% phi - scalar or vector back projected latitude in radians
%
% References:
% [1] Weisstein, E. W. (1999). Stereographic Projection. Retrieved
% March 19, 2006, from
% http://mathworld.wolfram.com/StereographicProjection.html
% [2] Weisstein, E. W. (1999). Orthographic Projection. Retrieved
% March 19, 2006, from
% http://mathworld.wolfram.com/OrthographicProjection.html
% [3] Weisstein, E. W. (1999). Gnomonic Projection. Retrieved March
% 19, 2006, from
% http://mathworld.wolfram.com/GnomonicProjection.html
% [4] Weisstein, E. W. (1999). Azimuthal Equidistant Projection.
% Retrieved March 19, 2006, from
% http://mathworld.wolfram.com/AzimuthalEquidistantProjection.html
% [5] Weisstein, E. W. (1999). Lambert Azimuthal Equal-Area
% Projection. Retrieved March 19, 2006, from
% http://mathworld.wolfram.com/LambertAzimuthalEqual-
% AreaProjection.html
%
% Author: Andreas Widmann, University of Leipzig, 2006
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2006 Andreas Widmann, University of Leipzig, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% $Id$
function varargout = mapproj(proj, varargin)
% Arguments and defaults
if nargin < 3
error('Not enough input arguments.')
end
if nargin < 4
varargin{end + 1} = pi; % Nose on top
end
if nargin < 5
varargin{end + 1} = pi / 2; % Vertex in center
end
proj = str2func(proj);
[varargout{1:nargout}] = proj(varargin{:});
% Projection
function [x, y] = sph2stereographic(th, phi, th0, phi1)
k = 2 ./ (1 + sin(phi1) * sin(phi) + cos(phi1) * cos(phi) .* cos(th - th0));
[x, y] = sph2proj(k, th, phi, th0, phi1);
function [x, y] = sph2orthographic(th, phi, th0, phi1)
phi(phi < 0) = NaN;
k = 1;
[x, y] = sph2proj(k, th, phi, th0, phi1);
function [x, y] = sph2gnomonic(th, phi, th0, phi1)
phi(phi <= 0) = NaN;
k = 1 ./ (sin(phi1) * sin(phi) + cos(phi1) * cos(phi) .* cos(th - th0));
[x, y] = sph2proj(k, th, phi, th0, phi1);
function [x, y] = sph2equidistant(th, phi, th0, phi1)
c = acos(sin(phi1) * sin(phi) + cos(phi1) * cos(phi) .* cos(th - th0));
temp = c ~= 0;
k = zeros(size(c));
k(temp) = c(temp) ./ sin(c(temp));
[x, y] = sph2proj(k, th, phi, th0, phi1);
function [x, y] = sph2equiareal(th, phi, th0, phi1)
k = sqrt(2 ./ (1 + sin(phi1) * sin(phi) + cos(phi1) * cos(phi) .* cos(th - th0)));
[x, y] = sph2proj(k, th, phi, th0, phi1);
% Projection main function
function [x, y] = sph2proj(k, th, phi, th0, phi1)
x = k .* cos(phi) .* sin(th - th0);
y = k .* (cos(phi1) * sin(phi) - sin(phi1) * cos(phi) .* cos(th - th0));
% Back projection
function [th, phi] = stereographic2sph(x, y, th0, phi1)
rho = sqrt(x .^ 2 + y .^ 2);
c = 2 * atan2(rho, 2);
[th, phi] = proj2sph(rho, c, x, y, th0, phi1);
function [th, phi] = orthographic2sph(x, y, th0, phi1)
rho = sqrt(x .^ 2 + y .^ 2);
rho(rho > 1) = NaN;
c = asin(rho);
[th, phi] = proj2sph(rho, c, x, y, th0, phi1);
function [th, phi] = gnomonic2sph(x, y, th0, phi1)
rho = sqrt(x .^ 2 + y .^ 2);
c = atan(rho);
[th, phi] = proj2sph(rho, c, x, y, th0, phi1);
function [th, phi] = equidistant2sph(x, y, th0, phi1)
rho = sqrt(x .^ 2 + y .^ 2);
c = rho;
[th, phi] = proj2sph(rho, c, x, y, th0, phi1);
function [th, phi] = equiareal2sph(x, y, th0, phi1)
rho = sqrt(x .^ 2 + y .^ 2);
c = 2 * asin(rho / 2);
[th, phi] = proj2sph(rho, c, x, y, th0, phi1);
% Back projection main function
function [th, phi] = proj2sph(rho, c, x, y, th0, phi1)
temp = rho ~= 0;
phi = phi1(ones(size(rho)));
phi(temp) = asin(cos(c(temp)) .* sin(phi1) + y(temp) .* sin(c(temp)) .* cos(phi1) ./ rho(temp));
th = th0 + atan2((x .* sin(c)), (rho * cos(phi1) .* cos(c) - y * sin(phi1) .* sin(c)));