-
Notifications
You must be signed in to change notification settings - Fork 25
/
conv-net-mnist.py
52 lines (30 loc) · 1.34 KB
/
conv-net-mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
print('Convnet solution to MNIST dataset')
from hack import hack
hack()
from keras import datasets
from keras.utils.np_utils import to_categorical
(train_images, train_labels), (validation_images, validation_labels) = datasets.mnist.load_data()
train_images = train_images.reshape((60000, 28, 28, 1))
train_images = train_images.astype('float32') / 255
validation_images = validation_images.reshape((10000, 28, 28, 1))
validation_images = validation_images.astype('float32') / 255
train_labels = to_categorical(train_labels)
validation_labels = to_categorical(validation_labels)
from keras import models
from keras import layers
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
model.summary()
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=5, batch_size=64)
test_loss, test_accuracy = model.evaluate(validation_images, validation_labels)
print(test_accuracy)