forked from sunshineInmoon/Tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLfwTest.py
168 lines (150 loc) · 5.19 KB
/
LfwTest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# -*- coding: utf-8 -*-
"""
Created on Mon Dec 14 11:33:58 2015
@author: Administrator
"""
import time
import math
import numpy as np
import scipy.io as sio
import os
import cv2
import copy
import sklearn.metrics.pairwise as pw
import matplotlib.pyplot as plt
import sys
caffe_root = 'F:/caffe-Microsoft/Build/x64/Release/pycaffe'
sys.path.insert(0, caffe_root)
#sys.path.append('D:/Documents/Downloads/protobuf-2.5.0/protobuf-2.5.0/python/')
import caffe
def cos_dist(a, b):
if len(a) != len(b):
return None
part_up = 0.0
a_sq = 0.0
b_sq = 0.0
for a1, b1 in zip(a,b):
part_up += a1*b1
a_sq += a1**2
b_sq += b1**2
part_down = math.sqrt(a_sq*b_sq)
if part_down == 0.0:
return None
else:
return part_up / part_down
def dis_cos(a,b):
sum0 = np.dot(a,b)
sum1 = np.sqrt(np.sum(np.power(a,2)))
sum2 = np.sqrt(np.sum(np.power(b,2)))
return sum0/(sum1*sum2)
#初始化网络
def Init_net(network_proto_path,network_model_path):
caffe.set_mode_cpu()
net = caffe.Net(network_proto_path, network_model_path, caffe.TEST)
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_raw_scale('data', 1) # the reference model operates on images in [0,255] range instead of [0,1]
# transformer.set_mean('data', None)
return net,transformer
def extract_feature(net,transformer,ImagePath1, ImagePath2,layer_name, image_as_grey = False):
"""
Extracts features for given model and image list.
Input
network_proto_path: network definition file, in prototxt format.
network_model_path: trainded network model file
image_list: A list contains paths of all images, which will be fed into the
network and their features would be saved.
layer_name: The name of layer whose output would be extracted.
save_path: The file path of extracted features to be saved.
"""
net.blobs['data'].reshape(2,3,128,128)
img = cv2.imread(ImagePath1)
img1 = cv2.imread(ImagePath2)
shape0 = img.shape
shape1 = img1.shape
if shape0[0]!=128 and shape0[1]!=128:
cv2.resize(img,(128,128))
if shape1[0]!=128 and shape1[1]!=128:
cv2.resize(img1,(128,128))
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
gray1 = cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY)
gray = gray / 256.0
gray1 = gray1 / 256.0
ImageBatch= []
ImageBatch.append(gray)
ImageBatch.append(gray)
net.blobs['data'].data[0] = transformer.preprocess('data', gray)
net.blobs['data'].data[1] = transformer.preprocess('data', gray1)
out = net.forward()
a = net.blobs[layer_name].data[0].copy()
b = net.blobs[layer_name].data[1].copy()
#b = b.reshape(256,1)
#dst = dis_cos(a,b)
dst = pw.paired_distances(a,b,'cosine')
#b = b.reshape(256,1)
#dst = dis_cos(a,b)
#print 'dst0:',dst0,' dst:',dst
return 1-dst
if __name__ == "__main__":
network_proto_path = r'F:/Net_train.prototxt'
network_model_path = r'F:/Net_iter_800000.caffemodel'
layer_name = r'fc1'
theat = [0.25,0.11,0.12,0.13,0.14,0.15,0.16,0.17,0.18,0.19,0.20]
#初试化网络
net,transformer = Init_net(network_proto_path,network_model_path)
Res=[]
for k in range(1):
fr1 = open('E:/Face_data/left_1.txt')
fr2 = open('E:/Face_data/right_1.txt')
fr3 = open('E:/Face_data/label_1.txt')
fr4 = open('E:/Face_data/result_my_2.txt','w')
fr5 = open('E:/Face_data/error.txt','w')
lines1 = fr1.readlines()
lines2 = fr2.readlines()
lines3 = fr3.readlines()
result=0
num = 0.0
re=0
dist = []
pos = []
neg = []
err = []
for i in range(len(lines1)):
ImagePath1 = lines1[i].strip().split()
ImagePath2 = lines2[i].strip().split()
label = lines3[i].strip().split()
if not os.path.exists(ImagePath1[0]):
continue
if not os.path.exists(ImagePath2[0]):
continue
dst = extract_feature(net,transformer,ImagePath1[0],ImagePath2[0],layer_name)
d = copy.deepcopy(dst)
dist.append(dst)
#print "第%d个样本,相似度: %f" %(num,dst)
if int(label[0]) == 1:
pos.append(dst)
str1 = "第%d个样本,正样本,相似度: %f" %(num,dst)
fr4.write(str1+'\n')
print str1
else:
neg.append(dst)
str2 = "第%d个样本,负样本,相似度: %f" %(num,dst)
fr4.write(str2 + '\n')
print str2
if dst >= theat[k]:
re = 1
else:
re = 0
if re == int(label[0]):
result += 1
else:
err.append(dst)
str3="第%d个样本,相似度:%f \n路径1:%s\n路径:2:%s"%(num,dst,ImagePath1[0],ImagePath2[0])
fr5.write(str3+'\n\n')
num += 1
print theat[k],u' 准确度:',(result/num)
Res.append(result/num)
fr1.close()
fr2.close()
fr3.close()
fr4.close()
fr5.close()